Name | n3_chennan_CS_ershoufang_58_com |
---|---|
Data | 98.16M (+ 0B) |
Tables | 5 (+ 0) |
Columns | 37 (+ 0) |
Table Rows | 261,311 (+ 0) |
Media | 0B (+ 0B) |
Files | 0 (+ 0) |
Last Commit | 2023-06-19 18:36:38 (+ 169 d) |
这个二手房数据库有来自中国29个热门城市的40,809套二手房信息。每套二手房信息记录中有标题、总价、单价、核心卖点、业主心态和小区配套。该二手房数据库共有5个表。
This is a database of second-hand houses with 40,809 records from 29 popular cities in China. Each record is comprised of title, total price, unit price, core selling point, the owner mentality and supporting facilities of community. The whole China second-hand houses database has 5 tables.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
category_1 | 668 | title |
100%
|
chengshi_id |
100%
|
||
category_1_x_ershoufang | 40,862 | category_1_id |
100%
|
ershoufang_id |
100%
|
||
chengshi | 29 | title |
100%
|
ershoufang | 40,809 | title |
100%
|
zongjia |
100%
|
||
danjia |
100%
|
||
hexin_maidian |
66.28%
|
||
yezhu_xintai |
58.84%
|
||
xiaoqu_peitao |
58.99%
|
||
huxing |
66.6%
|
||
louceng |
65.36%
|
||
mianji |
66.64%
|
||
zhuangxiu |
66.63%
|
||
chaoxiang |
64.95%
|
||
jubgong_shijian |
66.64%
|
||
xiaoqu_mingcheng |
66.63%
|
||
weizhi |
65.59%
|
||
chanquan_nianxian |
65.11%
|
||
cankao_shoufu |
66.64%
|
||
image | 178,943 | ershoufang_id |
100%
|
No media sets.
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 98.16M (+ 0B) | 5 (+ 0) | 37 (+ 0) | 261,311 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2023-01-01 (+ 95 d) | 98.16M (+ 0B) | 5 (+ 0) | 37 (+ 0) | 261,311 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2022-09-27 (+ 271 d) | 98.16M (+ 0B) | 5 (+ 0) | 37 (+ 0) | 261,311 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-12-30 (+ 115 d) | 98.16M (+ 0B) | 5 (+ 0) | 37 (+ 0) | 261,311 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-09-05 (+ 150 d) | 98.16M (+ 0B) | 5 (+ 0) | 37 (+ 0) | 261,311 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-04-08 (+ 68 d) | 98.16M (+ 0B) | 5 (+ 0) | 37 (+ 0) | 261,311 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-01-29 (+ 120 d) | 98.16M (+ 0B) | 5 (+ 0) | 37 (+ 0) | 261,311 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-10-01 (+ 38 d) | 98.16M (+ 0B) | 5 (+ 0) | 37 (+ 0) | 261,311 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-08-23 (+ 141 d) | 98.16M (+ 0B) | 5 (+ 0) | 37 (+ 0) | 261,311 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-04-04 (+ 196 d) | 98.16M (+ 0B) | 5 (+ 0) | 37 (+ 0) | 261,311 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-09-21 (+ 197 d) | 98.16M (+ 0B) | 5 (+ 0) | 37 (+ 0) | 261,311 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-03-07 (+ 43 d) | 98.16M (+ 0B) | 5 (+ 0) | 37 (+ 0) | 261,311 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-01-23 (+ 44 d) | 98.16M (+ 0B) | 5 (+ 0) | 37 (+ 0) | 261,311 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-12-09 (+ 29 d) | 98.16M (+ 0B) | 5 (+ 0) | 37 (+ 0) | 261,311 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-11-09 (+ 27 d) | 98.16M (+ 55.17M) | 5 (+ 0) | 37 (+ 0) | 261,311 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-10-13 (+ 29 d) | 42.98M (+ 0B) | 5 (+ 0) | 37 (+ 0) | 261,311 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-09-13 (+ 34 d) | 42.98M (+ 0B) | 5 (+ 0) | 37 (+ 0) | 261,311 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-08-09 (+ 27 d) | 42.98M (+ 0B) | 5 (+ 0) | 37 (+ 0) | 261,311 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-07-12 (+ 31 d) | 42.98M (+ 21.12M) | 5 (+ 1) | 37 (+ 14) | 261,311 (+ 178,943) | 0B (+ 0B) | 0 (+ 0) |
2018-06-10 | 21.86M | 4 | 23 | 82,368 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.