Name | n3_chennan_CS_falvanli_law_lib_com |
---|---|
Data | 40.08M (+ 0B) |
Tables | 3 (+ 0) |
Columns | 16 (+ 0) |
Table Rows | 16,603 (+ 0) |
Media | 0B (+ 0B) |
Files | 0 (+ 0) |
Last Commit | 2023-06-19 18:36:38 (+ 169 d) |
这是一个记录有8,300篇裁决文书数据库且共有3大分类 (刑事裁判文书、民事裁判文书和行政裁判文书)。每篇裁决书包含有标题,事件和内容。该裁决文书数据库共有3个表。
This China judgements database contains 8,300 judgements with title, event and content in each. All these judgements are categorized into 3 classifications, such as criminal judgement, civil judgement and administrative judgement. The whole China judgements data set has a total of 3 tables.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
caijuewenshu | 8,300 | title |
100%
|
shijian |
100%
|
||
neirong |
62.04%
|
||
category_1 | 3 | title |
100%
|
category_1_x_caijuewenshu | 8,300 | category_1_id |
100%
|
caijuewenshu_id |
100%
|
No media sets.
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 40.08M (+ 0B) | 3 (+ 0) | 16 (+ 0) | 16,603 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2023-01-01 (+ 95 d) | 40.08M (+ 0B) | 3 (+ 0) | 16 (+ 0) | 16,603 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2022-09-27 (+ 271 d) | 40.08M (+ 0B) | 3 (+ 0) | 16 (+ 0) | 16,603 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-12-30 (+ 115 d) | 40.08M (+ 0B) | 3 (+ 0) | 16 (+ 0) | 16,603 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-09-05 (+ 150 d) | 40.08M (+ 0B) | 3 (+ 0) | 16 (+ 0) | 16,603 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-04-08 (+ 68 d) | 40.08M (+ 0B) | 3 (+ 0) | 16 (+ 0) | 16,603 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-01-29 (+ 120 d) | 40.08M (+ 0B) | 3 (+ 0) | 16 (+ 0) | 16,603 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-10-01 (+ 38 d) | 40.08M (+ 0B) | 3 (+ 0) | 16 (+ 0) | 16,603 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-08-23 (+ 141 d) | 40.08M (+ 0B) | 3 (+ 0) | 16 (+ 0) | 16,603 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-04-04 (+ 196 d) | 40.08M (+ 0B) | 3 (+ 0) | 16 (+ 0) | 16,603 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-09-21 (+ 197 d) | 40.08M (+ 0B) | 3 (+ 0) | 16 (+ 0) | 16,603 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-03-07 (+ 43 d) | 40.08M (+ 0B) | 3 (+ 0) | 16 (+ 0) | 16,603 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-01-23 (+ 44 d) | 40.08M (+ 0B) | 3 (+ 0) | 16 (+ 0) | 16,603 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-12-09 (+ 29 d) | 40.08M (+ 0B) | 3 (+ 0) | 16 (+ 0) | 16,603 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-11-09 (+ 27 d) | 40.08M (+ 18.98M) | 3 (+ 0) | 16 (+ 0) | 16,603 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-10-13 (+ 29 d) | 21.09M (+ 0B) | 3 (+ 0) | 16 (+ 0) | 16,603 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-09-13 (+ 34 d) | 21.09M (+ 0B) | 3 (+ 0) | 16 (+ 0) | 16,603 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-08-09 (+ 27 d) | 21.09M (+ 0B) | 3 (+ 0) | 16 (+ 0) | 16,603 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-07-12 (+ 31 d) | 21.09M (+ 0B) | 3 (+ 0) | 16 (+ 0) | 16,603 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-06-10 (+ 31 d) | 21.09M (+ 0B) | 3 (+ 0) | 16 (+ 0) | 16,603 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-05-10 | 21.09M | 3 | 16 | 16,603 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.