Name | n3_chennan_CS_falvwenzhang_civillaw_com_cn_sp |
---|---|
Data | 31.84M (+ 0B) |
Tables | 1 (+ 0) |
Columns | 9 (+ 0) |
Table Rows | 15,630 (+ 0) |
Media | 0B (+ 0B) |
Files | 0 (+ 0) |
Last Commit | 2023-06-19 18:36:38 (+ 169 d) |
该法律文章数据库是一个单表结构,包含有15,630篇文章且每篇文章涉及标题、导语、内容、时间、注释等相关信息。
The legal papers database contains 15,630 records with title, introduction, content, time, etc. in each. It only has one table in the whole legal theses database.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
falvwenzhang | 15,630 | title |
100%
|
daoyu |
7.52%
|
||
neirong |
9.53%
|
||
zhushi |
1.36%
|
||
shijian |
9.94%
|
||
biaoqian |
9.9%
|
No media sets.
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 31.84M (+ 0B) | 1 (+ 0) | 9 (+ 0) | 15,630 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2023-01-01 (+ 95 d) | 31.84M (+ 0B) | 1 (+ 0) | 9 (+ 0) | 15,630 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2022-09-27 (+ 271 d) | 31.84M (+ 0B) | 1 (+ 0) | 9 (+ 0) | 15,630 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-12-30 (+ 115 d) | 31.84M (+ 0B) | 1 (+ 0) | 9 (+ 0) | 15,630 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-09-05 (+ 150 d) | 31.84M (+ 0B) | 1 (+ 0) | 9 (+ 0) | 15,630 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-04-08 (+ 68 d) | 31.84M (+ 0B) | 1 (+ 0) | 9 (+ 0) | 15,630 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-01-29 (+ 120 d) | 31.84M (+ 0B) | 1 (+ 0) | 9 (+ 0) | 15,630 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-10-01 (+ 38 d) | 31.84M (+ 0B) | 1 (+ 0) | 9 (+ 0) | 15,630 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-08-23 (+ 141 d) | 31.84M (+ 0B) | 1 (+ 0) | 9 (+ 0) | 15,630 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-04-04 (+ 196 d) | 31.84M (+ 0B) | 1 (+ 0) | 9 (+ 0) | 15,630 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-09-21 (+ 197 d) | 31.84M (+ 0B) | 1 (+ 0) | 9 (+ 0) | 15,630 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-03-07 (+ 43 d) | 31.84M (+ 0B) | 1 (+ 0) | 9 (+ 0) | 15,630 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-01-23 (+ 44 d) | 31.84M (+ 0B) | 1 (+ 0) | 9 (+ 0) | 15,630 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-12-09 (+ 29 d) | 31.84M (+ 0B) | 1 (+ 0) | 9 (+ 0) | 15,630 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-11-09 (+ 27 d) | 31.84M (+ 26M) | 1 (+ 0) | 9 (+ 0) | 15,630 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-10-13 (+ 29 d) | 5.84M (+ 0B) | 1 (+ 0) | 9 (+ 0) | 15,630 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-09-13 (+ 34 d) | 5.84M (+ 0B) | 1 (+ 0) | 9 (+ 0) | 15,630 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-08-09 (+ 27 d) | 5.84M (+ 0B) | 1 (+ 0) | 9 (+ 0) | 15,630 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-07-12 (+ 31 d) | 5.84M (+ 0B) | 1 (+ 0) | 9 (+ 0) | 15,630 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-06-10 (+ 31 d) | 5.84M (+ 0B) | 1 (+ 0) | 9 (+ 0) | 15,630 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-05-10 | 5.84M | 1 | 9 | 15,630 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.