Name | n3_chennan_CS_cidian_dict_bioon_com_cidian |
---|---|
Data | 21.67M (+ 0B) |
Tables | 3 (+ 0) |
Columns | 15 (+ 0) |
Table Rows | 147,896 (+ 0) |
Media | 0B (+ 0B) |
Files | 0 (+ 0) |
Last Commit | 2023-06-19 18:36:38 (+ 169 d) |
该生物医药百科知识词典数据库包含有73,925个生物医药词汇,每个医药词汇包含有的中文和英文数据。这些医药词汇被分为46大类别,例如:生物学,遗传学,解刨学,心理学,生理学,寄生虫学等。该生物医药百科知识词汇数据库共有3个表。
This is a biological encyclopedia knowledge dictionary database with 73,925 biomedical vocabularies by 46 categories, such as biology, genetics, psychology, physiology, parasitology, etc. Each biomedical vocabulary has Chinese and English fields. There are 3 tables in the whole biological encyclopedia knowledge dictionary database.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
yiyao_cidian | 73,925 | zhongwen |
99.99%
|
yingwen |
99.98%
|
||
category_1 | 46 | title |
100%
|
category_1_x_yiyao_cidian | 73,925 | category_1_id |
100%
|
yiyao_cidian_id |
100%
|
No media sets.
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 21.67M (+ 0B) | 3 (+ 0) | 15 (+ 0) | 147,896 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2023-01-01 (+ 95 d) | 21.67M (+ 0B) | 3 (+ 0) | 15 (+ 0) | 147,896 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2022-09-27 (+ 271 d) | 21.67M (+ 0B) | 3 (+ 0) | 15 (+ 0) | 147,896 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-12-30 (+ 115 d) | 21.67M (+ 0B) | 3 (+ 0) | 15 (+ 0) | 147,896 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-09-05 (+ 150 d) | 21.67M (+ 0B) | 3 (+ 0) | 15 (+ 0) | 147,896 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-04-08 (+ 68 d) | 21.67M (+ 0B) | 3 (+ 0) | 15 (+ 0) | 147,896 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-01-29 (+ 120 d) | 21.67M (+ 0B) | 3 (+ 0) | 15 (+ 0) | 147,896 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-10-01 (+ 38 d) | 21.67M (+ 0B) | 3 (+ 0) | 15 (+ 0) | 147,896 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-08-23 (+ 141 d) | 21.67M (+ 0B) | 3 (+ 0) | 15 (+ 0) | 147,896 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-04-04 (+ 196 d) | 21.67M (+ 0B) | 3 (+ 0) | 15 (+ 0) | 147,896 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-09-21 (+ 197 d) | 21.67M (+ 0B) | 3 (+ 0) | 15 (+ 0) | 147,896 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-03-07 (+ 43 d) | 21.67M (+ 0B) | 3 (+ 0) | 15 (+ 0) | 147,896 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-01-23 (+ 44 d) | 21.67M (+ 0B) | 3 (+ 0) | 15 (+ 0) | 147,896 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-12-09 (+ 29 d) | 21.67M (+ 0B) | 3 (+ 0) | 15 (+ 0) | 147,896 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-11-09 (+ 27 d) | 21.67M (+ 2M) | 3 (+ 0) | 15 (+ 0) | 147,896 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-10-13 (+ 29 d) | 19.67M (+ 0B) | 3 (+ 0) | 15 (+ 0) | 147,896 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-09-13 (+ 34 d) | 19.67M (+ 0B) | 3 (+ 0) | 15 (+ 0) | 147,896 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-08-09 | 19.67M | 3 | 15 | 147,896 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.