Name | n3_chennan_CS_caipu_jucanw_com |
---|---|
Data | 56.33M (+ 0B) |
Tables | 3 (+ 0) |
Columns | 23 (+ 0) |
Table Rows | 39,290 (+ 0) |
Media | 0B (+ 0B) |
Files | 0 (+ 0) |
Last Commit | 2023-06-19 18:36:38 (+ 169 d) |
这是一个共包含有19,641个菜谱记录的数据库。每个菜谱记录中有标题,类型,做法,主料,配料,时间,难度,归属等。所有这些菜谱有以下8个分类,如:家常菜谱,孕妇食谱,儿童食谱,老人食谱,保健食谱,西餐美食,瘦身食谱和地方特色。该菜谱大全数据库共有3个表。
This recipes database is filled with 19,641 records by 8 categories (home-made recipes, pregnant women's recipes, children's recipes, elderly recipes, health recipes, Western cuisine, slimming recipes and local specialties). Each record is comprised of title, type, procedure, primary ingredients, time, etc. The whole recipes data has 3 tables.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
category_1 | 8 | title |
100%
|
caipu | 19,641 | leixing |
21.42%
|
zuofa |
100%
|
||
zhuliao |
98.63%
|
||
peiliao |
98.8%
|
||
shijian |
100%
|
||
nandu |
1.42%
|
||
guishu |
40.91%
|
||
biaopian |
100%
|
||
title |
100%
|
||
category_1_x_caipu | 19,641 | category_1_id |
100%
|
caipu_id |
100%
|
No media sets.
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 56.33M (+ 0B) | 3 (+ 0) | 23 (+ 0) | 39,290 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2023-01-01 (+ 95 d) | 56.33M (+ 0B) | 3 (+ 0) | 23 (+ 0) | 39,290 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2022-09-27 (+ 271 d) | 56.33M (+ 0B) | 3 (+ 0) | 23 (+ 0) | 39,290 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-12-30 (+ 115 d) | 56.33M (+ 0B) | 3 (+ 0) | 23 (+ 0) | 39,290 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-09-05 (+ 150 d) | 56.33M (+ 0B) | 3 (+ 0) | 23 (+ 0) | 39,290 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-04-08 (+ 68 d) | 56.33M (+ 0B) | 3 (+ 0) | 23 (+ 0) | 39,290 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-01-29 (+ 120 d) | 56.33M (+ 0B) | 3 (+ 0) | 23 (+ 0) | 39,290 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-10-01 (+ 38 d) | 56.33M (+ 0B) | 3 (+ 0) | 23 (+ 0) | 39,290 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-08-23 (+ 141 d) | 56.33M (+ 0B) | 3 (+ 0) | 23 (+ 0) | 39,290 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-04-04 (+ 196 d) | 56.33M (+ 0B) | 3 (+ 0) | 23 (+ 0) | 39,290 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-09-21 (+ 197 d) | 56.33M (+ 0B) | 3 (+ 0) | 23 (+ 0) | 39,290 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-03-07 (+ 43 d) | 56.33M (+ 0B) | 3 (+ 0) | 23 (+ 0) | 39,290 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-01-23 (+ 44 d) | 56.33M (+ 0B) | 3 (+ 0) | 23 (+ 0) | 39,290 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-12-09 (+ 29 d) | 56.33M (+ 0B) | 3 (+ 0) | 23 (+ 0) | 39,290 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-11-09 (+ 27 d) | 56.33M (+ 47.06M) | 3 (+ 0) | 23 (+ 0) | 39,290 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-10-13 (+ 29 d) | 9.27M (+ 0B) | 3 (+ 0) | 23 (+ 0) | 39,290 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-09-13 | 9.27M | 3 | 23 | 39,290 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.