Name | n3_chennan_CS_baobao_list_secoo_com |
---|---|
Data | 55M (+ 0B) |
Tables | 5 (+ 0) |
Columns | 42 (+ 0) |
Table Rows | 184,888 (+ 0) |
Media | 0B (+ 0B) |
Files | 0 (+ 0) |
Last Commit | 2023-06-19 18:36:38 (+ 169 d) |
这是一个世界知名品牌包包数据库。该奢侈品包包数据库中包含有29,146个来自265家世界品牌的包包, 如:Michael Kors, FURLA, PRADA,GUCCI, Louis Vuitton, etc.。每个包包记录中有包包的价格,销量,功能,产地,肩带尺寸,颜色,内部结构,五金材质,五金颜色,尺寸,开合方式,款式,附属肩带,材质,适用人群和品牌。所有这些包包被分为15大类别,如:单肩包,箱包养护,包袋定制,斜挎包,手提包,公文包,双肩包,钱包,包袋配件,手拿包,拉杆箱,旅行包,小型皮具,腰包和其它禁用。该品牌包包大全共包含有126,316张包包图片。整个奢侈品包包数据库共有5个表。
This is a well-known brand bags database of 29,146 records with title, price, sales, function, origin, shoulder straps size, color, internal structure, hardware material, hardware color, size, opening and closing mode, style, attached straps, material, suitable for and brands in each. All these luxury bags are from 265 worldwide well-known brands (such as Michael Kors, FURLA, PRADA, GUCCI, Louis Vuitton, etc.) and categorized into 15 classifications, such as single shouler bags, bag maintenance, custom bag, messenger bag, handbag, briefcase, backpack, wallet, bag accessories, clutch, draw-bar box, travelling bag, small leather goods, waist bag and other disabled. It also includes 126,316 pictures of these bags in the media set. The whole worldwide luxury bags database has a total of 5 tables.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
image | 126,316 | baobao_id |
100%
|
baobao | 29,146 | kaihe_fangshi |
55.3%
|
kuanshi |
43.18%
|
||
fushu_jiandai |
35.18%
|
||
caizhi |
86.66%
|
||
shiyong_renqun |
86.81%
|
||
pinpai |
98.75%
|
||
chicun |
96.15%
|
||
wujin_yanse |
30.19%
|
||
title |
100%
|
||
jiage |
100%
|
||
xiaoliang |
21.04%
|
||
chandi |
98.6%
|
||
jiandai_chicun |
24.45%
|
||
yanse |
85.74%
|
||
neibu_jiegou |
26.16%
|
||
wujin_caizhi |
43.87%
|
||
gongneng |
14.1%
|
||
category_1 | 15 | title |
100%
|
pinpai | 265 | title |
100%
|
category_1_id |
100%
|
||
category_1 |
100%
|
||
pinpai_x_baobao | 29,146 | pinpai_id |
100%
|
baobao_id |
100%
|
No media sets.
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 55M (+ 0B) | 5 (+ 0) | 42 (+ 0) | 184,888 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2023-01-01 (+ 95 d) | 55M (+ 0B) | 5 (+ 0) | 42 (+ 0) | 184,888 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2022-09-27 (+ 271 d) | 55M (+ 0B) | 5 (+ 0) | 42 (+ 0) | 184,888 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-12-30 (+ 115 d) | 55M (+ 0B) | 5 (+ 0) | 42 (+ 0) | 184,888 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-09-05 (+ 150 d) | 55M (+ 0B) | 5 (+ 0) | 42 (+ 0) | 184,888 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-04-08 (+ 68 d) | 55M (+ 0B) | 5 (+ 0) | 42 (+ 0) | 184,888 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-01-29 (+ 120 d) | 55M (+ 0B) | 5 (+ 0) | 42 (+ 0) | 184,888 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-10-01 (+ 38 d) | 55M (+ 0B) | 5 (+ 0) | 42 (+ 0) | 184,888 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-08-23 (+ 141 d) | 55M (+ 0B) | 5 (+ 0) | 42 (+ 0) | 184,888 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-04-04 (+ 196 d) | 55M (+ 0B) | 5 (+ 0) | 42 (+ 0) | 184,888 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-09-21 (+ 197 d) | 55M (+ 0B) | 5 (+ 0) | 42 (+ 0) | 184,888 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-03-07 (+ 43 d) | 55M (+ 0B) | 5 (+ 0) | 42 (+ 0) | 184,888 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-01-23 (+ 44 d) | 55M (+ 0B) | 5 (+ 0) | 42 (+ 0) | 184,888 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-12-09 (+ 29 d) | 55M (+ 0B) | 5 (+ 0) | 42 (+ 0) | 184,888 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-11-09 (+ 27 d) | 55M (+ 12.05M) | 5 (+ 0) | 42 (+ 0) | 184,888 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-10-13 (+ 29 d) | 42.95M (+ 0B) | 5 (+ 0) | 42 (+ 0) | 184,888 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-09-13 (+ 34 d) | 42.95M (+ 0B) | 5 (+ 0) | 42 (+ 0) | 184,888 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-08-09 | 42.95M | 5 | 42 | 184,888 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.