Name | n3_lyz_xueqiu.com_people |
---|---|
Data | 5.20G (+ 0B) |
Tables | 14 (+ 0) |
Columns | 81 (+ 0) |
Table Rows | 7,852,776 (+ 0) |
Media | 30.96G (+ 0B) |
Files | 413,364 (+ 0) |
Last Commit | 2023-06-19 18:12:05 (+ 169 d) |
该文章数据库主要为来自中国网络上67个类别,1,099名作者,1,390,470篇包括金融股市、保险债券、基金投资等方向的文章。除此之外,还有10,534个问答和2,346,796文章评论。
This is a fields-rich finance, economics and stock articles database having 1,390,470 records with content, author id, create timestample, retweet count, reply count, praise count, create time, etc. in each. All these articles are written by 1,099 authors in 67 categories. It contians 10,534 answers and 2,346,796 article comment records for these articles. There are 684,413 article images in the 30.96G media set. The whole finance, economics, stock articles and answers database totally has 14 tables.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
anwser | 10,534 | answer_timestampe |
100%
|
anwser |
100%
|
||
author_id |
100%
|
||
anwser_x_article | 10,557 | anwser_id |
100%
|
article_id |
100%
|
||
article | 1,390,470 | article_title |
17.73%
|
content |
64.71%
|
||
author_id |
100%
|
||
create_timestample |
65.06%
|
||
retweet_count |
65.06%
|
||
reply_count |
65.06%
|
||
praise_count |
65.06%
|
||
create_time |
59.97%
|
||
update_time |
0%
|
||
article_comment | 2,346,796 | comment_idt |
100%
|
comment_content |
100%
|
||
article_id |
100%
|
||
comment_timestample |
100%
|
||
article_image_slug | 684,413 | article_id |
100%
|
article_image_slug_c | 684,413 | article_id |
100%
|
author | 1,099 | screen_name |
100%
|
description |
100%
|
||
province |
86.17%
|
||
city |
86.17%
|
||
location |
0%
|
||
fucos_count |
100%
|
||
fans_count |
100%
|
||
authentication |
29.48%
|
||
feature |
4.73%
|
||
category | 67 | category |
100%
|
category_x_author | 1,818 | category_id |
100%
|
author_id |
100%
|
||
comment_x_reply_remark | 1,019,086 | article_comment_id |
100%
|
reply_remark_id |
100%
|
||
reply_remark | 752,107 | comment_idt |
100%
|
comment_content |
98.93%
|
||
comment_timestample |
100%
|
||
retweet | 475,269 | retweeted_timestample |
100%
|
retweeted_text |
100%
|
||
author_id |
100%
|
||
retweet_x_article | 476,147 | retweet_id |
100%
|
article_id |
100%
|
Size (Bytes) | Files |
---|---|
30.96G | 413,364 |
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 5.20G (+ 0B) | 14 (+ 0) | 81 (+ 0) | 7,852,776 (+ 0) | 30.96G (+ 0B) | 413,364 (+ 0) |
2023-01-01 (+ 95 d) | 5.20G (+ 0B) | 14 (+ 0) | 81 (+ 0) | 7,852,776 (+ 0) | 30.96G (+ 0B) | 413,364 (+ 0) |
2022-09-27 (+ 271 d) | 5.20G (+ 0B) | 14 (+ 0) | 81 (+ 0) | 7,852,776 (+ 0) | 30.96G (+ 0B) | 413,364 (+ 0) |
2021-12-30 (+ 115 d) | 5.20G (+ 0B) | 14 (+ 0) | 81 (+ 0) | 7,852,776 (+ 0) | 30.96G (+ 0B) | 413,364 (+ 0) |
2021-09-05 (+ 150 d) | 5.20G (+ 0B) | 14 (+ 0) | 81 (+ 0) | 7,852,776 (+ 0) | 30.96G (+ 0B) | 413,364 (+ 0) |
2021-04-08 (+ 68 d) | 5.20G (+ 0B) | 14 (+ 0) | 81 (+ 0) | 7,852,776 (+ 0) | 30.96G (+ 0B) | 413,364 (+ 0) |
2021-01-29 (+ 120 d) | 5.20G (+ 0B) | 14 (+ 0) | 81 (+ 0) | 7,852,776 (+ 0) | 30.96G (+ 0B) | 413,364 (+ 0) |
2020-10-01 (+ 38 d) | 5.20G (+ 0B) | 14 (+ 0) | 81 (+ 0) | 7,852,776 (+ 0) | 30.96G (+ 0B) | 413,364 (+ 0) |
2020-08-23 (+ 141 d) | 5.20G (+ 0B) | 14 (+ 0) | 81 (+ 0) | 7,852,776 (+ 0) | 30.96G (+ 0B) | 413,364 (+ 0) |
2020-04-04 (+ 196 d) | 5.20G (+ 0B) | 14 (+ 0) | 81 (+ 0) | 7,852,776 (+ 0) | 30.96G (+ 0B) | 413,364 (+ 0) |
2019-09-21 (+ 197 d) | 5.20G (+ 0B) | 14 (+ 0) | 81 (+ 0) | 7,852,776 (+ 0) | 30.96G (+ 0B) | 413,364 (+ 0) |
2019-03-07 (+ 43 d) | 5.20G (+ 0B) | 14 (+ 0) | 81 (+ 0) | 7,852,776 (+ 0) | 30.96G (+ 0B) | 413,364 (+ 0) |
2019-01-23 (+ 44 d) | 5.20G (+ 0B) | 14 (+ 0) | 81 (+ 0) | 7,852,776 (+ 0) | 30.96G (+ 0B) | 413,364 (+ 0) |
2018-12-09 (+ 29 d) | 5.20G (- 96K) | 14 (- 3) | 81 (- 6) | 7,852,776 (+ 0) | 30.96G (+ 0B) | 413,364 (+ 0) |
2018-11-09 (+ 27 d) | 5.20G (+ 2.28G) | 17 (+ 0) | 87 (+ 0) | 7,852,776 (+ 0) | 30.96G (+ 0B) | 413,364 (+ 0) |
2018-10-13 (+ 29 d) | 2.92G (+ 0B) | 17 (+ 0) | 87 (+ 0) | 7,852,776 (+ 0) | 30.96G (+ 0B) | 413,364 (+ 0) |
2018-09-13 (+ 34 d) | 2.92G (+ 0B) | 17 (+ 0) | 87 (+ 0) | 7,852,776 (+ 0) | 30.96G (+ 18.07G) | 413,364 (+ 236,075) |
2018-08-09 (+ 27 d) | 2.92G (+ 162.58M) | 17 (+ 4) | 87 (+ 11) | 7,852,776 (+ 756,938) | 12.89G (+ 12.89G) | 177,289 (+ 177,289) |
2018-07-12 (+ 31 d) | 2.77G (+ 117.44M) | 13 (+ 0) | 76 (+ 0) | 7,095,838 (+ 1,041,352) | 0B (+ 0B) | 0 (+ 0) |
2018-06-10 (+ 31 d) | 2.65G (+ 1.36G) | 13 (+ 0) | 76 (+ 2) | 6,054,486 (+ 5,489,992) | 0B (+ 0B) | 0 (+ 0) |
2018-05-10 | 1.29G | 13 | 74 | 564,494 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.