Name | n3zm_Guojiazhibiaoshuju_stats_gov_cn_(jidu) |
---|---|
Data | 1.69M (+ 0B) |
Tables | 7 (+ 0) |
Columns | 74 (+ 0) |
Table Rows | 4,074 (+ 0) |
Media | 0B (+ 0B) |
Files | 0 (+ 0) |
Last Commit | 2023-06-19 19:57:45 (+ 169 d) |
该数据库是中国国家经济、金融指标季度数据库,其中包含有二级分类月度指标数据327条和三级分类季度指标数据234条。每条季度指标数据记录中有指标名称,代码,分类,点数,IF显示代码,分类代码,单位等字段。共有7个表。
This is a China's National economy, financial quarterly index data with 327 records of secondary classification and 234 index records of reclassify. Each index record is comprised of zb name, code, exp, category, dotcount, ifshowcode, name, nodesort, sortcode, tag and unit. It also contains 1,962 index time records for secondary classification and 1,404 time records of reclassify in this index data. In index time table, there are time, data, strdata, category, dotcount and hasdata fields in each record. The whole China's National economy, financial quarterly index database totally has 7 tables.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
category_1 | 34 | dbcode |
100%
|
code |
100%
|
||
name |
100%
|
||
isparent |
100%
|
||
pid |
0%
|
||
wdcode |
100%
|
||
category_2 | 35 | dbcode |
100%
|
code |
100%
|
||
name |
100%
|
||
category_1_id |
100%
|
||
isparent |
100%
|
||
pid |
100%
|
||
wdcode |
100%
|
||
category_1 |
100%
|
||
category_2_zhibiao | 327 | zb_name |
100%
|
code |
100%
|
||
exp |
77.06%
|
||
category_2_id |
100%
|
||
dotcount |
100%
|
||
ifshowcode |
100%
|
||
name |
100%
|
||
nodesort |
100%
|
||
sortcode |
100%
|
||
tag |
0%
|
||
unit |
74.31%
|
||
category_2 |
100%
|
||
category_2_zhibiao_shijian | 1,962 | shijian |
100%
|
data |
100%
|
||
strdata |
85.42%
|
||
category_2_zhibiao_id |
100%
|
||
dotcount |
0%
|
||
hasdata |
100%
|
||
category_2_zhibiao |
100%
|
||
category_3 | 78 | dbcode |
100%
|
code |
100%
|
||
name |
100%
|
||
category_2_id |
100%
|
||
isparent |
100%
|
||
pid |
100%
|
||
wdcode |
100%
|
||
category_2 |
100%
|
||
category_3_zhibiao | 234 | zb_name |
100%
|
code |
100%
|
||
exp |
33.33%
|
||
category_3_id |
100%
|
||
dotcount |
100%
|
||
ifshowcode |
100%
|
||
name |
100%
|
||
nodesort |
100%
|
||
sortcode |
100%
|
||
tag |
0%
|
||
unit |
100%
|
||
category_3 |
100%
|
||
category_3_zhibiao_shijian | 1,404 | shijian |
100%
|
data |
100%
|
||
strdata |
67.95%
|
||
category_3_zhibiao_id |
100%
|
||
dotcount |
0%
|
||
hasdata |
100%
|
||
category_3_zhibiao |
100%
|
No media sets.
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 1.69M (+ 0B) | 7 (+ 0) | 74 (+ 0) | 4,074 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2023-01-01 (+ 95 d) | 1.69M (+ 0B) | 7 (+ 0) | 74 (+ 0) | 4,074 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2022-09-27 (+ 271 d) | 1.69M (+ 0B) | 7 (+ 0) | 74 (+ 0) | 4,074 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-12-30 (+ 115 d) | 1.69M (+ 0B) | 7 (+ 0) | 74 (+ 0) | 4,074 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-09-05 (+ 150 d) | 1.69M (+ 0B) | 7 (+ 0) | 74 (+ 0) | 4,074 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-04-08 (+ 68 d) | 1.69M (+ 0B) | 7 (+ 0) | 74 (+ 0) | 4,074 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-01-29 (+ 120 d) | 1.69M (+ 0B) | 7 (+ 0) | 74 (+ 0) | 4,074 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-10-01 (+ 38 d) | 1.69M (+ 0B) | 7 (+ 0) | 74 (+ 0) | 4,074 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-08-23 (+ 141 d) | 1.69M (+ 0B) | 7 (+ 0) | 74 (+ 0) | 4,074 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-04-04 (+ 196 d) | 1.69M (+ 0B) | 7 (+ 0) | 74 (+ 0) | 4,074 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-09-21 (+ 197 d) | 1.69M (+ 0B) | 7 (+ 0) | 74 (+ 0) | 4,074 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-03-07 (+ 43 d) | 1.69M (+ 0B) | 7 (+ 0) | 74 (+ 0) | 4,074 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-01-23 (+ 44 d) | 1.69M (+ 0B) | 7 (+ 0) | 74 (+ 0) | 4,074 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-12-09 (+ 29 d) | 1.69M (+ 0B) | 7 (+ 0) | 74 (+ 0) | 4,074 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-11-09 (+ 27 d) | 1.69M (+ 272K) | 7 (+ 0) | 74 (+ 0) | 4,074 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-10-13 (+ 30 d) | 1.42M (+ 0B) | 7 (+ 0) | 74 (+ 0) | 4,074 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-09-13 (+ 34 d) | 1.42M (+ 0B) | 7 (+ 0) | 74 (+ 0) | 4,074 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-08-09 (+ 27 d) | 1.42M (+ 0B) | 7 (+ 0) | 74 (+ 0) | 4,074 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-07-12 (+ 31 d) | 1.42M (+ 0B) | 7 (+ 0) | 74 (+ 0) | 4,074 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-06-10 (+ 31 d) | 1.42M (+ 0B) | 7 (+ 0) | 74 (+ 0) | 4,074 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-05-10 (+ 28 d) | 1.42M (+ 0B) | 7 (+ 0) | 74 (+ 0) | 4,074 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-04-11 (+ 38 d) | 1.42M (+ 0B) | 7 (+ 0) | 74 (+ 0) | 4,074 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-03-03 (+ 35 d) | 1.42M (+ 0B) | 7 (+ 0) | 74 (+ 0) | 4,074 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-01-27 (+ 29 d) | 1.42M (+ 0B) | 7 (+ 0) | 74 (+ 0) | 4,074 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2017-12-29 (+ 20 d) | 1.42M (+ 0B) | 7 (+ 0) | 74 (+ 0) | 4,074 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2017-12-08 (+ 9 d) | 1.42M (+ 0B) | 7 (+ 0) | 74 (+ 0) | 4,074 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2017-11-28 (+ 19 d) | 1.42M (+ 0B) | 7 (+ 0) | 74 (+ 0) | 4,074 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2017-11-09 (+ 10 d) | 1.42M (+ 0B) | 7 (+ 0) | 74 (+ 0) | 4,074 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2017-10-29 | 1.42M | 7 | 74 | 4,074 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.