Name | n3zm_Postal_Codes_geonames_org |
---|---|
Data | 6.83M (+ 5.17M) |
Tables | 2 (- 1) |
Columns | 18 (+ 0) |
Table Rows | 16,225 (+ 6,254) |
Media | 0B (+ 0B) |
Files | 0 (+ 0) |
Last Commit | 2023-06-19 19:57:45 (+ 169 d) |
This is a global geostatistics database having 15,975 records of 250 countries. Each record is comprised of mark, feature code, country id, num names, feature class and feature description. In table country, there are country, names, country code, area in km2, names per km2, population and names per one k inhabitants in each. The whole global geostatistics data set has 2 tables in total.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
country | 250 | country |
100%
|
names |
100%
|
||
country_code |
100%
|
||
area_in_km2 |
100%
|
||
names_per_km2 |
99.6%
|
||
population |
98%
|
||
names_per_one_k_inhabitants |
98%
|
||
detail_statics | 15,975 | feature_code |
100%
|
country_id |
100%
|
||
num_names |
100%
|
||
feature_class |
99.81%
|
||
feature_description |
92.98%
|
||
mark |
100%
|
No media sets.
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 6.83M (+ 5.17M) | 2 (- 1) | 18 (+ 0) | 16,225 (+ 6,254) | 0B (+ 0B) | 0 (+ 0) |
2023-01-01 (+ 95 d) | 1.66M (+ 0B) | 3 (+ 0) | 18 (+ 0) | 9,971 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2022-09-27 (+ 271 d) | 1.66M (+ 0B) | 3 (+ 0) | 18 (+ 0) | 9,971 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-12-30 (+ 115 d) | 1.66M (+ 0B) | 3 (+ 0) | 18 (+ 0) | 9,971 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-09-05 (+ 150 d) | 1.66M (+ 0B) | 3 (+ 0) | 18 (+ 0) | 9,971 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-04-08 (+ 68 d) | 1.66M (+ 0B) | 3 (+ 0) | 18 (+ 0) | 9,971 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-01-29 (+ 120 d) | 1.66M (+ 0B) | 3 (+ 0) | 18 (+ 0) | 9,971 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-10-01 (+ 38 d) | 1.66M (+ 0B) | 3 (+ 0) | 18 (+ 0) | 9,971 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-08-23 (+ 141 d) | 1.66M (+ 0B) | 3 (+ 0) | 18 (+ 0) | 9,971 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-04-04 (+ 196 d) | 1.66M (+ 0B) | 3 (+ 0) | 18 (+ 0) | 9,971 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-09-21 (+ 197 d) | 1.66M (+ 0B) | 3 (+ 0) | 18 (+ 0) | 9,971 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-03-07 (+ 43 d) | 1.66M (+ 0B) | 3 (+ 0) | 18 (+ 0) | 9,971 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-01-23 (+ 44 d) | 1.66M (+ 0B) | 3 (+ 0) | 18 (+ 0) | 9,971 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-12-09 (+ 29 d) | 1.66M (+ 0B) | 3 (+ 0) | 18 (+ 0) | 9,971 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-11-09 (+ 27 d) | 1.66M (- 0.11M) | 3 (+ 0) | 18 (+ 0) | 9,971 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-10-13 (+ 30 d) | 1.77M (+ 0B) | 3 (+ 0) | 18 (+ 0) | 9,971 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-09-13 (+ 34 d) | 1.77M (+ 0B) | 3 (+ 0) | 18 (+ 0) | 9,971 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-08-09 (+ 27 d) | 1.77M (+ 0B) | 3 (+ 0) | 18 (+ 0) | 9,971 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-07-12 (+ 31 d) | 1.77M (+ 0B) | 3 (+ 0) | 18 (+ 0) | 9,971 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-06-10 (+ 31 d) | 1.77M (+ 0B) | 3 (+ 0) | 18 (+ 0) | 9,971 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-05-10 | 1.77M | 3 | 18 | 9,971 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.