Name | n3_chennan_CS_ershouche_qches_com |
---|---|
Data | 18.02M (+ 0B) |
Tables | 4 (+ 0) |
Columns | 23 (+ 0) |
Table Rows | 62,902 (+ 0) |
Media | 0B (+ 0B) |
Files | 0 (+ 0) |
Last Commit | 2023-06-19 18:36:38 (+ 169 d) |
全国4,071辆二手车主要信息及737基本信息数据库。每个二手车主要信息中有价钱,车主描述,发布日期,表显里程,上牌时间和排放标准。除此之外,数据库中还包含有33,674张汽车照片。该二手车信息数据库中共有4表。
This China second-hand cars database is filled with 4,071 records with price, owner description, release date, apparent mileage, card time and emission standard in each. There are 737 basic information of these cars. It also has 33,674 images of these cars in the data. The whole China second-hand cars database has 4 tables in total.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
ershouche_x_jiben_xinxi | 24,420 | ershouche_id |
100%
|
jiben_xinxi_id |
100%
|
||
ershouche | 4,071 | jiage |
100%
|
chezhu_miaoshu |
80.67%
|
||
fabu_riqi |
99.98%
|
||
biaoxian_licheng |
99.98%
|
||
shangpai_shijian |
99.98%
|
||
paifang_biaozhun |
68.83%
|
||
title |
100%
|
||
image | 33,674 | ershouche_id |
100%
|
jiben_xinxi | 737 | key |
100%
|
value |
99.86%
|
No media sets.
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 18.02M (+ 0B) | 4 (+ 0) | 23 (+ 0) | 62,902 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2023-01-01 (+ 95 d) | 18.02M (+ 0B) | 4 (+ 0) | 23 (+ 0) | 62,902 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2022-09-27 (+ 271 d) | 18.02M (+ 0B) | 4 (+ 0) | 23 (+ 0) | 62,902 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-12-30 (+ 115 d) | 18.02M (+ 0B) | 4 (+ 0) | 23 (+ 0) | 62,902 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-09-05 (+ 150 d) | 18.02M (+ 0B) | 4 (+ 0) | 23 (+ 0) | 62,902 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-04-08 (+ 68 d) | 18.02M (+ 0B) | 4 (+ 0) | 23 (+ 0) | 62,902 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-01-29 (+ 120 d) | 18.02M (+ 0B) | 4 (+ 0) | 23 (+ 0) | 62,902 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-10-01 (+ 38 d) | 18.02M (+ 0B) | 4 (+ 0) | 23 (+ 0) | 62,902 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-08-23 (+ 141 d) | 18.02M (+ 0B) | 4 (+ 0) | 23 (+ 0) | 62,902 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-04-04 (+ 196 d) | 18.02M (+ 0B) | 4 (+ 0) | 23 (+ 0) | 62,902 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-09-21 (+ 197 d) | 18.02M (+ 0B) | 4 (+ 0) | 23 (+ 0) | 62,902 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-03-07 (+ 43 d) | 18.02M (+ 0B) | 4 (+ 0) | 23 (+ 0) | 62,902 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-01-23 (+ 44 d) | 18.02M (+ 0B) | 4 (+ 0) | 23 (+ 0) | 62,902 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-12-09 (+ 29 d) | 18.02M (+ 0B) | 4 (+ 0) | 23 (+ 0) | 62,902 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-11-09 (+ 27 d) | 18.02M (- 1.89M) | 4 (+ 0) | 23 (+ 0) | 62,902 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-10-13 (+ 29 d) | 19.91M (+ 0B) | 4 (+ 0) | 23 (+ 0) | 62,902 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-09-13 | 19.91M | 4 | 23 | 62,902 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.