Name | n3_chennan_CS_huangye_qiye_qipei8_com |
---|---|
Data | 426.23M (+ 0B) |
Tables | 3 (+ 0) |
Columns | 23 (+ 0) |
Table Rows | 993,432 (+ 0) |
Media | 0B (+ 0B) |
Files | 0 (+ 0) |
Last Commit | 2023-06-19 18:36:38 (+ 169 d) |
这是全国34个城市的496,699汽车配件公司信息数据库。每家汽车配件企业信息中包含有电话,地址,公司说明,汽配指数,联系人等。该汽配企业信息数据库中共有3个表。
The auto parts companies database contains 496,699 records from 34 cities in China. Each auto parts company has phone number, address, company instructions, auto parts index, contact, etc. The whole China auto parts enterprises data set totally has 3 tables.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
qipei_gongsi | 496,699 | title |
100%
|
dianhua |
91.89%
|
||
dizhi |
99.85%
|
||
gongsi_shuomimg |
99.99%
|
||
qipei_zhishu |
99.99%
|
||
lianxiren |
59.86%
|
||
zhiwei |
1.03%
|
||
shouji |
37.82%
|
||
chuanzhen |
2.71%
|
||
youxiang |
4.34%
|
||
chengshi | 34 | title |
100%
|
chengshi_x_qipei_gongsi | 496,699 | chengshi_id |
100%
|
qipei_gongsi_id |
100%
|
No media sets.
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 426.23M (+ 0B) | 3 (+ 0) | 23 (+ 0) | 993,432 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2023-01-01 (+ 95 d) | 426.23M (+ 0B) | 3 (+ 0) | 23 (+ 0) | 993,432 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2022-09-27 (+ 271 d) | 426.23M (+ 0B) | 3 (+ 0) | 23 (+ 0) | 993,432 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-12-30 (+ 115 d) | 426.23M (+ 0B) | 3 (+ 0) | 23 (+ 0) | 993,432 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-09-05 (+ 150 d) | 426.23M (+ 0B) | 3 (+ 0) | 23 (+ 0) | 993,432 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-04-08 (+ 68 d) | 426.23M (+ 0B) | 3 (+ 0) | 23 (+ 0) | 993,432 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-01-29 (+ 120 d) | 426.23M (+ 0B) | 3 (+ 0) | 23 (+ 0) | 993,432 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-10-01 (+ 38 d) | 426.23M (+ 0B) | 3 (+ 0) | 23 (+ 0) | 993,432 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-08-23 (+ 141 d) | 426.23M (+ 0B) | 3 (+ 0) | 23 (+ 0) | 993,432 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-04-04 (+ 196 d) | 426.23M (+ 0B) | 3 (+ 0) | 23 (+ 0) | 993,432 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-09-21 (+ 197 d) | 426.23M (+ 0B) | 3 (+ 0) | 23 (+ 0) | 993,432 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-03-07 (+ 43 d) | 426.23M (+ 0B) | 3 (+ 0) | 23 (+ 0) | 993,432 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-01-23 (+ 44 d) | 426.23M (+ 0B) | 3 (+ 0) | 23 (+ 0) | 993,432 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-12-09 (+ 29 d) | 426.23M (+ 0B) | 3 (+ 0) | 23 (+ 0) | 993,432 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-11-09 (+ 27 d) | 426.23M (+ 254.27M) | 3 (+ 0) | 23 (+ 0) | 993,432 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-10-13 (+ 29 d) | 171.97M (+ 0B) | 3 (+ 0) | 23 (+ 0) | 993,432 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-09-13 | 171.97M | 3 | 23 | 993,432 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.