Name | n3_chennan_CS_huangyeyiyuan_yyk_qqyy_com |
---|---|
Data | 27.59M (+ 0B) |
Tables | 4 (+ 0) |
Columns | 37 (+ 0) |
Table Rows | 46,803 (+ 0) |
Media | 0B (+ 0B) |
Files | 0 (+ 0) |
Last Commit | 2023-06-19 18:36:38 (+ 169 d) |
这是一个全国各省份的23,383家医院信息数据库,每家医院信息中有咨询热线,地址,简介,名称,等级,机构类别,经营性质,医保类型,服务方式,服务对象,电话,邮编等。所有这些医院均来自全国7个地区30个省份。该全国医院信息数据库共有4个表。
This China hospitals database is filled with 23,383 records from 30 provinces of 7 regions in China. Each hospital is comprised of consultation hotline, address, profile, name, level, institutional category, management nature, types of medical insurance, service mode, phone number, zip code, and etc. The whole China hospitals data set totally has 4 tables.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
yiyuan | 23,383 | fuwu_fangshi |
99.72%
|
yiyuan_guanwang |
41.65%
|
||
youbian |
72.36%
|
||
youxiang |
21.1%
|
||
0.9%
|
|||
weixin_gongzhonghao |
1.51%
|
||
chuanzhen |
15.83%
|
||
dianhua |
96.6%
|
||
fuwu_duixiang |
99.72%
|
||
yiyuan_dizhi |
99.23%
|
||
yibao_leixing |
99.72%
|
||
jingying_xingzhi |
99.72%
|
||
jigou_leibie |
99.72%
|
||
yiyuan_dengji |
99.72%
|
||
jianyuan_shijian |
99.72%
|
||
yiyuan_mingcheng |
99.72%
|
||
yiyuan_jianjie |
99.72%
|
||
title |
100%
|
||
zixun_rexian |
100%
|
||
diqu | 7 | title |
100%
|
shengfen | 30 | title |
100%
|
diqu_id |
100%
|
||
shengfen_x_yiyuan | 23,383 | shengfen_id |
100%
|
yiyuan_id |
100%
|
No media sets.
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 27.59M (+ 0B) | 4 (+ 0) | 37 (+ 0) | 46,803 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2023-01-01 (+ 95 d) | 27.59M (+ 0B) | 4 (+ 0) | 37 (+ 0) | 46,803 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2022-09-27 (+ 271 d) | 27.59M (+ 0B) | 4 (+ 0) | 37 (+ 0) | 46,803 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-12-30 (+ 115 d) | 27.59M (+ 0B) | 4 (+ 0) | 37 (+ 0) | 46,803 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-09-05 (+ 150 d) | 27.59M (+ 0B) | 4 (+ 0) | 37 (+ 0) | 46,803 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-04-08 (+ 68 d) | 27.59M (+ 0B) | 4 (+ 0) | 37 (+ 0) | 46,803 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-01-29 (+ 120 d) | 27.59M (+ 0B) | 4 (+ 0) | 37 (+ 0) | 46,803 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-10-01 (+ 38 d) | 27.59M (+ 0B) | 4 (+ 0) | 37 (+ 0) | 46,803 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-08-23 (+ 141 d) | 27.59M (+ 0B) | 4 (+ 0) | 37 (+ 0) | 46,803 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-04-04 (+ 196 d) | 27.59M (+ 0B) | 4 (+ 0) | 37 (+ 0) | 46,803 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-09-21 (+ 197 d) | 27.59M (+ 0B) | 4 (+ 0) | 37 (+ 0) | 46,803 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-03-07 (+ 43 d) | 27.59M (+ 0B) | 4 (+ 0) | 37 (+ 0) | 46,803 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-01-23 (+ 44 d) | 27.59M (+ 0B) | 4 (+ 0) | 37 (+ 0) | 46,803 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-12-09 (+ 29 d) | 27.59M (+ 0B) | 4 (+ 0) | 37 (+ 0) | 46,803 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-11-09 (+ 27 d) | 27.59M (+ 15.11M) | 4 (+ 0) | 37 (+ 0) | 46,803 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-10-13 (+ 29 d) | 12.48M (+ 0B) | 4 (+ 0) | 37 (+ 0) | 46,803 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-09-13 (+ 34 d) | 12.48M (+ 0B) | 4 (+ 0) | 37 (+ 0) | 46,803 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-08-09 (+ 27 d) | 12.48M (+ 0B) | 4 (+ 0) | 37 (+ 0) | 46,803 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-07-12 (+ 31 d) | 12.48M (+ 0B) | 4 (+ 0) | 37 (+ 0) | 46,803 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-06-10 | 12.48M | 4 | 37 | 46,803 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.