Name | n3_chennan_CS_jiudian_jiudian_cncn_com |
---|---|
Data | 40.33M (+ 0B) |
Tables | 5 (+ 0) |
Columns | 45 (+ 0) |
Table Rows | 244,918 (+ 0) |
Media | 0B (+ 0B) |
Files | 0 (+ 0) |
Last Commit | 2023-06-19 18:36:38 (+ 169 d) |
这是一个全国酒店信息数据库,共有来自30个省,1,223个城市,11,023个地区的76,586个酒店信息。每个酒店信息包含有区域,地址,经度,纬度,价格,好评等。该全国酒店信息数据库中共有5个表。
From this China hotels database, there are 76,586 records over 11,023 regions from 1,223 cities of 30 provinces in China. Each hotel consists of region, address, longitude, latitude, price, favorable comment, etc. The whole China hotels data set totally has 5 tables.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
jiudian | 76,586 | jiudian_jianjie |
0.01%
|
jiaotong_weizhi |
0.01%
|
||
kejieshou_xinyongka |
0.01%
|
||
fangjian_sheshi |
0.01%
|
||
kangti_yule |
0.01%
|
||
jiudian_fuwu |
0.01%
|
||
canyin_sheshi |
0.01%
|
||
shangwang_fuwu |
0.01%
|
||
kaiye_shijian |
0.01%
|
||
jiudian_dianhua |
0.01%
|
||
dianping |
74.88%
|
||
haoping |
74.88%
|
||
jiage |
100%
|
||
weidu |
100%
|
||
jingdu |
100%
|
||
dizhi |
100%
|
||
quyu |
95.6%
|
||
title |
100%
|
||
category_1 | 30 | title |
100%
|
category_2 | 1,223 | title |
100%
|
category_1_id |
100%
|
||
category_3 | 11,023 | title |
100%
|
category_2_id |
100%
|
||
category_2 |
100%
|
||
category_3_x_jiudian | 156,056 | category_3_id |
100%
|
jiudian_id |
100%
|
No media sets.
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 40.33M (+ 0B) | 5 (+ 0) | 45 (+ 0) | 244,918 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2023-01-01 (+ 95 d) | 40.33M (+ 0B) | 5 (+ 0) | 45 (+ 0) | 244,918 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2022-09-27 (+ 271 d) | 40.33M (+ 0B) | 5 (+ 0) | 45 (+ 0) | 244,918 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-12-30 (+ 115 d) | 40.33M (+ 0B) | 5 (+ 0) | 45 (+ 0) | 244,918 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-09-05 (+ 150 d) | 40.33M (+ 0B) | 5 (+ 0) | 45 (+ 0) | 244,918 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-04-08 (+ 68 d) | 40.33M (+ 0B) | 5 (+ 0) | 45 (+ 0) | 244,918 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-01-29 (+ 120 d) | 40.33M (+ 0B) | 5 (+ 0) | 45 (+ 0) | 244,918 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-10-01 (+ 38 d) | 40.33M (+ 0B) | 5 (+ 0) | 45 (+ 0) | 244,918 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-08-23 (+ 141 d) | 40.33M (+ 0B) | 5 (+ 0) | 45 (+ 0) | 244,918 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-04-04 (+ 196 d) | 40.33M (+ 0B) | 5 (+ 0) | 45 (+ 0) | 244,918 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-09-21 (+ 197 d) | 40.33M (+ 0B) | 5 (+ 0) | 45 (+ 0) | 244,918 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-03-07 (+ 43 d) | 40.33M (+ 0B) | 5 (+ 0) | 45 (+ 0) | 244,918 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-01-23 (+ 44 d) | 40.33M (+ 0B) | 5 (+ 0) | 45 (+ 0) | 244,918 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-12-09 (+ 29 d) | 40.33M (+ 0B) | 5 (+ 0) | 45 (+ 0) | 244,918 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-11-09 (+ 27 d) | 40.33M (- 2.08M) | 5 (+ 0) | 45 (+ 0) | 244,918 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-10-13 (+ 29 d) | 42.41M (+ 0B) | 5 (+ 0) | 45 (+ 0) | 244,918 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-09-13 (+ 34 d) | 42.41M (+ 0B) | 5 (+ 0) | 45 (+ 0) | 244,918 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-08-09 (+ 27 d) | 42.41M (+ 0B) | 5 (+ 0) | 45 (+ 0) | 244,918 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-07-12 | 42.41M | 5 | 45 | 244,918 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.