Name | n3_chennan_CS_kuaidi_kuaidiwo_cn |
---|---|
Data | 16.69M (+ 0B) |
Tables | 3 (+ 0) |
Columns | 17 (+ 0) |
Table Rows | 78,249 (+ 0) |
Media | 0B (+ 0B) |
Files | 0 (+ 0) |
Last Commit | 2023-06-19 18:36:38 (+ 169 d) |
这是一个来自全国361个城市的38,944个快递网点信息数据库。每个快递网点包含有联系电话和地址。该全国快递网点数据库共有3个表。
From this China express networks data set, it contains 38,944 express network records in 361 cities of China. Each record is comprised of telephone number and address. There are 3 tables in the whole China express networks database.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
kuaidi_wangdian | 38,944 | dizhi |
100%
|
title |
100%
|
||
lianxi_dianhua |
39.85%
|
||
chengshi | 361 | title |
100%
|
chengshi_x_kuaidi_wangdian | 38,944 | chengshi_id |
100%
|
kuaidi_wangdian_id |
100%
|
No media sets.
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 16.69M (+ 0B) | 3 (+ 0) | 17 (+ 0) | 78,249 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2023-01-01 (+ 95 d) | 16.69M (+ 0B) | 3 (+ 0) | 17 (+ 0) | 78,249 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2022-09-27 (+ 271 d) | 16.69M (+ 0B) | 3 (+ 0) | 17 (+ 0) | 78,249 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-12-30 (+ 115 d) | 16.69M (+ 0B) | 3 (+ 0) | 17 (+ 0) | 78,249 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-09-05 (+ 150 d) | 16.69M (+ 0B) | 3 (+ 0) | 17 (+ 0) | 78,249 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-04-08 (+ 68 d) | 16.69M (+ 0B) | 3 (+ 0) | 17 (+ 0) | 78,249 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-01-29 (+ 120 d) | 16.69M (+ 0B) | 3 (+ 0) | 17 (+ 0) | 78,249 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-10-01 (+ 38 d) | 16.69M (+ 0B) | 3 (+ 0) | 17 (+ 0) | 78,249 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-08-23 (+ 141 d) | 16.69M (+ 0B) | 3 (+ 0) | 17 (+ 0) | 78,249 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-04-04 (+ 196 d) | 16.69M (+ 0B) | 3 (+ 0) | 17 (+ 0) | 78,249 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-09-21 (+ 197 d) | 16.69M (+ 0B) | 3 (+ 0) | 17 (+ 0) | 78,249 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-03-07 (+ 43 d) | 16.69M (+ 0B) | 3 (+ 0) | 17 (+ 0) | 78,249 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-01-23 (+ 44 d) | 16.69M (+ 0B) | 3 (+ 0) | 17 (+ 0) | 78,249 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-12-09 (+ 29 d) | 16.69M (+ 0B) | 3 (+ 0) | 17 (+ 0) | 78,249 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-11-09 (+ 27 d) | 16.69M (- 1M) | 3 (+ 0) | 17 (+ 0) | 78,249 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-10-13 (+ 29 d) | 17.69M (+ 0B) | 3 (+ 0) | 17 (+ 0) | 78,249 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-09-13 (+ 34 d) | 17.69M (+ 0B) | 3 (+ 0) | 17 (+ 0) | 78,249 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-08-09 | 17.69M | 3 | 17 | 78,249 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.