Name | n3_chennan_CS_falvwenzhang_jsqlawer_com |
---|---|
Data | 48.06M (+ 0B) |
Tables | 3 (+ 0) |
Columns | 19 (+ 0) |
Table Rows | 15,815 (+ 0) |
Media | 0B (+ 0B) |
Files | 0 (+ 0) |
Last Commit | 2023-06-19 18:36:38 (+ 169 d) |
该法律文章数据库包含有15个分类下的7,452篇法律文章。每篇法律文章有内容,来源,作者和时间信息。整个法律文章数据库共有3个表。
This is a legal articles database with 7,452 records by 15 categories. Each record is comprised of title, content, source, author and time. The whole legal articles database totally has 3 tables.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
category_1 | 15 | title |
100%
|
category_1_x_wenzhang | 8,348 | category_1_id |
100%
|
wenzhang_id |
100%
|
||
wenzhang | 7,452 | title |
100%
|
neirong |
99.99%
|
||
laiyuan |
100%
|
||
zuozhe |
100%
|
||
shijian |
100%
|
No media sets.
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 48.06M (+ 0B) | 3 (+ 0) | 19 (+ 0) | 15,815 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2023-01-01 (+ 95 d) | 48.06M (+ 0B) | 3 (+ 0) | 19 (+ 0) | 15,815 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2022-09-27 (+ 271 d) | 48.06M (+ 0B) | 3 (+ 0) | 19 (+ 0) | 15,815 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-12-30 (+ 115 d) | 48.06M (+ 0B) | 3 (+ 0) | 19 (+ 0) | 15,815 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-09-05 (+ 150 d) | 48.06M (+ 0B) | 3 (+ 0) | 19 (+ 0) | 15,815 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-04-08 (+ 68 d) | 48.06M (+ 0B) | 3 (+ 0) | 19 (+ 0) | 15,815 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-01-29 (+ 120 d) | 48.06M (+ 0B) | 3 (+ 0) | 19 (+ 0) | 15,815 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-10-01 (+ 38 d) | 48.06M (+ 0B) | 3 (+ 0) | 19 (+ 0) | 15,815 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-08-23 (+ 141 d) | 48.06M (+ 0B) | 3 (+ 0) | 19 (+ 0) | 15,815 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-04-04 (+ 196 d) | 48.06M (+ 0B) | 3 (+ 0) | 19 (+ 0) | 15,815 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-09-21 (+ 197 d) | 48.06M (+ 0B) | 3 (+ 0) | 19 (+ 0) | 15,815 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-03-07 (+ 43 d) | 48.06M (+ 0B) | 3 (+ 0) | 19 (+ 0) | 15,815 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-01-23 (+ 44 d) | 48.06M (+ 0B) | 3 (+ 0) | 19 (+ 0) | 15,815 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-12-09 (+ 29 d) | 48.06M (+ 0B) | 3 (+ 0) | 19 (+ 0) | 15,815 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-11-09 (+ 27 d) | 48.06M (+ 14M) | 3 (+ 0) | 19 (+ 0) | 15,815 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-10-13 (+ 29 d) | 34.06M (+ 0B) | 3 (+ 0) | 19 (+ 0) | 15,815 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-09-13 (+ 34 d) | 34.06M (+ 0B) | 3 (+ 0) | 19 (+ 0) | 15,815 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-08-09 (+ 27 d) | 34.06M (+ 0B) | 3 (+ 0) | 19 (+ 0) | 15,815 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-07-12 | 34.06M | 3 | 19 | 15,815 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.