Name | n3_chennan_CS_huangye_qiye_jiancai365_cn |
---|---|
Data | 15.12M (+ 0B) |
Tables | 7 (+ 0) |
Columns | 30 (+ 0) |
Table Rows | 59,606 (+ 0) |
Media | 0B (+ 0B) |
Files | 0 (+ 0) |
Last Commit | 2023-06-19 18:36:38 (+ 169 d) |
在该全国建材企业信息数据库中,共有25,737家建材公司,这些企业按照产品类型被分为45个主要类别和844个次分类。每家建材公司中包含有公司简介,主营,电话和地区。共有7个表。
This is a building materials enterprises database having 25,737 records with company profile, main industry, telephone number and region in each. There are 45 main categories and 844 secondary classifications for these building materials companies in this data. The whole China building materials data set has 7 tables in total.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
jiancai_qiye_x_tuijian_chanpin | 0 | tuijian_chanpin_id |
0%
|
jiancai_qiye_id |
0%
|
||
tuijian_chanpin | 0 | title |
0%
|
category_2 | 844 | category_1_id |
100%
|
title |
100%
|
||
jiancai_qiye | 25,737 | diqu |
0%
|
dianhua |
82.17%
|
||
zhuying |
99.9%
|
||
gongsi_jieshao |
0%
|
||
title |
100%
|
||
category_2_x_jiancai_qiye | 32,980 | jiancai_qiye_id |
100%
|
category_2_id |
100%
|
||
category_1 | 45 | title |
100%
|
Size (Bytes) | Files |
---|---|
0P | 0 |
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 15.12M (+ 0B) | 7 (+ 0) | 30 (+ 0) | 59,606 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2023-01-01 (+ 95 d) | 15.12M (+ 0B) | 7 (+ 0) | 30 (+ 0) | 59,606 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2022-09-27 (+ 271 d) | 15.12M (+ 0B) | 7 (+ 0) | 30 (+ 0) | 59,606 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-12-30 (+ 115 d) | 15.12M (+ 0B) | 7 (+ 0) | 30 (+ 0) | 59,606 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-09-05 (+ 150 d) | 15.12M (+ 0B) | 7 (+ 0) | 30 (+ 0) | 59,606 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-04-08 (+ 68 d) | 15.12M (+ 0B) | 7 (+ 0) | 30 (+ 0) | 59,606 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-01-29 (+ 120 d) | 15.12M (+ 0B) | 7 (+ 0) | 30 (+ 0) | 59,606 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-10-01 (+ 38 d) | 15.12M (+ 0B) | 7 (+ 0) | 30 (+ 0) | 59,606 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-08-23 (+ 141 d) | 15.12M (+ 0B) | 7 (+ 0) | 30 (+ 0) | 59,606 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-04-04 (+ 196 d) | 15.12M (+ 0B) | 7 (+ 0) | 30 (+ 0) | 59,606 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-09-21 (+ 197 d) | 15.12M (+ 0B) | 7 (+ 0) | 30 (+ 0) | 59,606 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-03-07 (+ 43 d) | 15.12M (+ 0B) | 7 (+ 0) | 30 (+ 0) | 59,606 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-01-23 (+ 44 d) | 15.12M (+ 0B) | 7 (+ 0) | 30 (+ 0) | 59,606 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-12-09 (+ 29 d) | 15.12M (+ 0B) | 7 (+ 0) | 30 (+ 0) | 59,606 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-11-09 (+ 27 d) | 15.12M (+ 8.89M) | 7 (+ 0) | 30 (+ 0) | 59,606 (+ 36,470) | 0B (+ 0B) | 0 (+ 0) |
2018-10-13 | 6.23M | 7 | 30 | 23,136 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.