Name | n3_chennan_CS_jiudian_gckzw_com |
---|---|
Data | 55.78M (+ 0B) |
Tables | 4 (+ 0) |
Columns | 21 (+ 0) |
Table Rows | 276,772 (+ 0) |
Media | 0B (+ 0B) |
Files | 0 (+ 0) |
Last Commit | 2023-06-19 18:36:38 (+ 169 d) |
全国酒店信息数据库中包含有137,295家酒店的地址和价格。该酒店信息数据库共有4个表。
From this China hotels database, there are 137,295 hotels with price and address in each. The whole China hotels data totally has 4 tables.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
jiudian | 137,295 | jiage |
100%
|
title |
100%
|
||
dizhi |
100%
|
||
category_1 | 22 | title |
100%
|
category_2 | 2,160 | title |
100%
|
category_1_id |
100%
|
||
category_2_x_jiudian | 137,295 | category_2_id |
100%
|
jiudian_id |
100%
|
No media sets.
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 55.78M (+ 0B) | 4 (+ 0) | 21 (+ 0) | 276,772 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2023-01-01 (+ 95 d) | 55.78M (+ 0B) | 4 (+ 0) | 21 (+ 0) | 276,772 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2022-09-27 (+ 271 d) | 55.78M (+ 0B) | 4 (+ 0) | 21 (+ 0) | 276,772 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-12-30 (+ 115 d) | 55.78M (+ 0B) | 4 (+ 0) | 21 (+ 0) | 276,772 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-09-05 (+ 150 d) | 55.78M (+ 0B) | 4 (+ 0) | 21 (+ 0) | 276,772 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-04-08 (+ 68 d) | 55.78M (+ 0B) | 4 (+ 0) | 21 (+ 0) | 276,772 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-01-29 (+ 120 d) | 55.78M (+ 0B) | 4 (+ 0) | 21 (+ 0) | 276,772 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-10-01 (+ 38 d) | 55.78M (+ 0B) | 4 (+ 0) | 21 (+ 0) | 276,772 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-08-23 (+ 141 d) | 55.78M (+ 0B) | 4 (+ 0) | 21 (+ 0) | 276,772 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-04-04 (+ 196 d) | 55.78M (+ 0B) | 4 (+ 0) | 21 (+ 0) | 276,772 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-09-21 (+ 197 d) | 55.78M (+ 0B) | 4 (+ 0) | 21 (+ 0) | 276,772 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-03-07 (+ 43 d) | 55.78M (+ 0B) | 4 (+ 0) | 21 (+ 0) | 276,772 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-01-23 (+ 44 d) | 55.78M (+ 0B) | 4 (+ 0) | 21 (+ 0) | 276,772 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-12-09 (+ 29 d) | 55.78M (+ 0B) | 4 (+ 0) | 21 (+ 0) | 276,772 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-11-09 (+ 27 d) | 55.78M (- 8.12M) | 4 (+ 0) | 21 (+ 0) | 276,772 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-10-13 (+ 29 d) | 63.91M (+ 0B) | 4 (+ 0) | 21 (+ 0) | 276,772 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-09-13 (+ 34 d) | 63.91M (+ 0B) | 4 (+ 0) | 21 (+ 0) | 276,772 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-08-09 (+ 27 d) | 63.91M (+ 0B) | 4 (+ 0) | 21 (+ 0) | 276,772 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-07-12 | 63.91M | 4 | 21 | 276,772 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.