Name | n3_chennan_CS_used_car_akd_cn |
---|---|
Data | 12.28M (+ 0B) |
Tables | 7 (+ 0) |
Columns | 34 (+ 0) |
Table Rows | 20,749 (+ 0) |
Media | 940.48M (+ 0B) |
Files | 8,021 (+ 0) |
Last Commit | 2023-06-19 18:36:38 (+ 169 d) |
这是一个中国市场二手车出售信息数据库,共计有来自70个品牌下的806辆二手车。每辆二手车包含有日期,可议价,车辆价钱,原价,车辆概述,首付和月供。除此之外,数据中还包含有1,287个车辆详情以及8,021张车辆图片。该二手车信息数据库共有7个表。
In the used cars database, there are 806 second-hand cars with date, negotiable price, used car price, original price, car summary, down payment and monthly payment in each. These used cars are from 70 brands. There are 1,287 details of these cars in this data. It also comes with 8,021 images of these used cars in the 940.48M media set. The whole used cars data set totally has 7 tables.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
brand | 70 | title |
100%
|
brand_x_used_car | 806 | brand_id |
100%
|
used_car_id |
100%
|
||
detail | 1,287 | key |
100%
|
value |
100%
|
||
image | 8,021 | used_car_id |
100%
|
alt |
100%
|
||
used_car | 806 | title |
100%
|
cardate |
100%
|
||
keyijia |
25.68%
|
||
chejia |
68.86%
|
||
yuanjia |
95.66%
|
||
chelianggaishu |
100%
|
||
shoufu |
99.13%
|
||
yuegong |
99.13%
|
||
used_car_x_detail | 9,759 | used_car_id |
100%
|
detail_id |
100%
|
Size (Bytes) | Files |
---|---|
940.48M | 8,021 |
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 12.28M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 20,749 (+ 0) | 940.48M (+ 0B) | 8,021 (+ 0) |
2023-01-01 (+ 95 d) | 12.28M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 20,749 (+ 0) | 940.48M (+ 0B) | 8,021 (+ 0) |
2022-09-27 (+ 271 d) | 12.28M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 20,749 (+ 0) | 940.48M (+ 0B) | 8,021 (+ 0) |
2021-12-30 (+ 115 d) | 12.28M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 20,749 (+ 0) | 940.48M (+ 0B) | 8,021 (+ 0) |
2021-09-05 (+ 150 d) | 12.28M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 20,749 (+ 0) | 940.48M (+ 0B) | 8,021 (+ 0) |
2021-04-08 (+ 68 d) | 12.28M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 20,749 (+ 0) | 940.48M (+ 0B) | 8,021 (+ 0) |
2021-01-29 (+ 120 d) | 12.28M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 20,749 (+ 0) | 940.48M (+ 0B) | 8,021 (+ 0) |
2020-10-01 (+ 38 d) | 12.28M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 20,749 (+ 0) | 940.48M (+ 0B) | 8,021 (+ 0) |
2020-08-23 (+ 141 d) | 12.28M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 20,749 (+ 0) | 940.48M (+ 0B) | 8,021 (+ 0) |
2020-04-04 (+ 196 d) | 12.28M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 20,749 (+ 0) | 940.48M (+ 0B) | 8,021 (+ 0) |
2019-09-21 (+ 197 d) | 12.28M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 20,749 (+ 0) | 940.48M (+ 0B) | 8,021 (+ 0) |
2019-03-07 (+ 43 d) | 12.28M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 20,749 (+ 0) | 940.48M (+ 0B) | 8,021 (+ 0) |
2019-01-23 (+ 44 d) | 12.28M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 20,749 (+ 0) | 940.48M (+ 0B) | 8,021 (+ 0) |
2018-12-09 (+ 29 d) | 12.28M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 20,749 (+ 0) | 940.48M (+ 0B) | 8,021 (+ 0) |
2018-11-09 (+ 27 d) | 12.28M (- 0.56M) | 7 (+ 0) | 34 (+ 0) | 20,749 (+ 0) | 940.48M (+ 0B) | 8,021 (+ 0) |
2018-10-13 (+ 29 d) | 12.84M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 20,749 (+ 0) | 940.48M (+ 0B) | 8,021 (+ 0) |
2018-09-13 (+ 34 d) | 12.84M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 20,749 (+ 0) | 940.48M (+ 0B) | 8,021 (+ 0) |
2018-08-09 (+ 27 d) | 12.84M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 20,749 (+ 0) | 940.48M (+ 0B) | 8,021 (+ 0) |
2018-07-12 (+ 31 d) | 12.84M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 20,749 (+ 0) | 940.48M (+ 0B) | 8,021 (+ 0) |
2018-06-10 (+ 31 d) | 12.84M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 20,749 (+ 0) | 940.48M (+ 0B) | 8,021 (+ 0) |
2018-05-10 | 12.84M | 7 | 34 | 20,749 | 940.48M | 8,021 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.