Name | n3_chennan_CS_used_car_hx2car_com |
---|---|
Data | 8.33M (+ 0B) |
Tables | 7 (+ 0) |
Columns | 34 (+ 0) |
Table Rows | 15,427 (+ 0) |
Media | 418.61M (+ 0B) |
Files | 3,907 (+ 0) |
Last Commit | 2023-06-19 18:36:38 (+ 169 d) |
这是一个中国二手车出售信息数据库,共有121个品牌下的3,097辆二手车。每辆二手车包含有更新时间,价格,车辆地址,汽车里程,描述,电话和新车价格。该数据中包含有557个汽车基本配置信息。在表图片中有3,907张汽车图片且存储在418.61M的媒体文件包中。该二手车信息数据库共有7个表。
Database of used cars is filled with 3,097 records from 121 brands in Chinese market. Each record consists of update time, price, car address, car miles, description, telephone number and new car price. There are 557 basic configuration records for these cars. It also comes with7 images in the 418.61M media set of this data. The whole Chinese second-hand cars database totally has 7 tables.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
brand | 121 | title |
100%
|
brand_x_used_car | 4,433 | brand_id |
100%
|
used_car_id |
100%
|
||
image | 3,907 | used_car_id |
100%
|
alt |
100%
|
||
jibenpeizhi | 557 | key |
100%
|
value |
100%
|
||
used_car | 3,097 | title |
100%
|
update_time |
100%
|
||
price |
100%
|
||
car_address |
100%
|
||
car_miles |
100%
|
||
description |
10.53%
|
||
phone |
7.81%
|
||
new_car_price |
11.79%
|
||
used_car_x_jibenpeizhi | 3,312 | used_car_id |
100%
|
jibenpeizhi_id |
100%
|
Size (Bytes) | Files |
---|---|
418.61M | 3,907 |
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 8.33M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 15,427 (+ 0) | 418.61M (+ 0B) | 3,907 (+ 0) |
2023-01-01 (+ 95 d) | 8.33M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 15,427 (+ 0) | 418.61M (+ 0B) | 3,907 (+ 0) |
2022-09-27 (+ 271 d) | 8.33M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 15,427 (+ 0) | 418.61M (+ 0B) | 3,907 (+ 0) |
2021-12-30 (+ 115 d) | 8.33M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 15,427 (+ 0) | 418.61M (+ 0B) | 3,907 (+ 0) |
2021-09-05 (+ 150 d) | 8.33M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 15,427 (+ 0) | 418.61M (+ 0B) | 3,907 (+ 0) |
2021-04-08 (+ 68 d) | 8.33M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 15,427 (+ 0) | 418.61M (+ 0B) | 3,907 (+ 0) |
2021-01-29 (+ 120 d) | 8.33M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 15,427 (+ 0) | 418.61M (+ 0B) | 3,907 (+ 0) |
2020-10-01 (+ 38 d) | 8.33M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 15,427 (+ 0) | 418.61M (+ 0B) | 3,907 (+ 0) |
2020-08-23 (+ 141 d) | 8.33M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 15,427 (+ 0) | 418.61M (+ 0B) | 3,907 (+ 0) |
2020-04-04 (+ 196 d) | 8.33M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 15,427 (+ 0) | 418.61M (+ 0B) | 3,907 (+ 0) |
2019-09-21 (+ 197 d) | 8.33M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 15,427 (+ 0) | 418.61M (+ 0B) | 3,907 (+ 0) |
2019-03-07 (+ 43 d) | 8.33M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 15,427 (+ 0) | 418.61M (+ 0B) | 3,907 (+ 0) |
2019-01-23 (+ 44 d) | 8.33M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 15,427 (+ 0) | 418.61M (+ 0B) | 3,907 (+ 0) |
2018-12-09 (+ 29 d) | 8.33M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 15,427 (+ 0) | 418.61M (+ 0B) | 3,907 (+ 0) |
2018-11-09 (+ 27 d) | 8.33M (- 1.98M) | 7 (+ 0) | 34 (+ 0) | 15,427 (+ 0) | 418.61M (+ 0B) | 3,907 (+ 0) |
2018-10-13 (+ 29 d) | 10.31M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 15,427 (+ 0) | 418.61M (+ 0B) | 3,907 (+ 0) |
2018-09-13 (+ 34 d) | 10.31M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 15,427 (+ 0) | 418.61M (+ 0B) | 3,907 (+ 0) |
2018-08-09 (+ 27 d) | 10.31M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 15,427 (+ 0) | 418.61M (+ 0B) | 3,907 (+ 0) |
2018-07-12 (+ 31 d) | 10.31M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 15,427 (+ 0) | 418.61M (+ 0B) | 3,907 (+ 0) |
2018-06-10 (+ 31 d) | 10.31M (+ 0B) | 7 (+ 0) | 34 (+ 0) | 15,427 (+ 0) | 418.61M (+ 0B) | 3,907 (+ 0) |
2018-05-10 | 10.31M | 7 | 34 | 15,427 | 418.61M | 3,907 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.