Name | n3_chennan_CS_xiehouyu_xiehouyu_911cha_com |
---|---|
Data | 5.92M (+ 0B) |
Tables | 4 (+ 0) |
Columns | 20 (+ 0) |
Table Rows | 29,743 (+ 0) |
Media | 0B (+ 0B) |
Files | 0 (+ 0) |
Last Commit | 2023-06-19 18:36:38 (+ 169 d) |
这是一个歇后语信息数据库,共有13,897个歇后语且每个歇后语包含有答案和类别。这些歇后语被分为15大类别。该歇后语信息数据库共有4个表。
This allegorical sayings database is filled with 13,897 records with answer and category in each. These allegorical sayings are categorized into 15 types. The whole allegorical sayings database totally has 4 tables.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
category_2 | 188 | category_1_id |
100%
|
title |
100%
|
||
xiehouyu | 13,897 | leibie |
100%
|
daan |
100%
|
||
title |
100%
|
||
category_2_x_xiehouyu | 15,643 | xiehouyu_id |
100%
|
category_2_id |
100%
|
||
category_1 | 15 | title |
100%
|
No media sets.
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 5.92M (+ 0B) | 4 (+ 0) | 20 (+ 0) | 29,743 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2023-01-01 (+ 95 d) | 5.92M (+ 0B) | 4 (+ 0) | 20 (+ 0) | 29,743 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2022-09-27 (+ 271 d) | 5.92M (+ 0B) | 4 (+ 0) | 20 (+ 0) | 29,743 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-12-30 (+ 115 d) | 5.92M (+ 0B) | 4 (+ 0) | 20 (+ 0) | 29,743 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-09-05 (+ 150 d) | 5.92M (+ 0B) | 4 (+ 0) | 20 (+ 0) | 29,743 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-04-08 (+ 68 d) | 5.92M (+ 0B) | 4 (+ 0) | 20 (+ 0) | 29,743 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-01-29 (+ 120 d) | 5.92M (+ 0B) | 4 (+ 0) | 20 (+ 0) | 29,743 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-10-01 (+ 38 d) | 5.92M (+ 0B) | 4 (+ 0) | 20 (+ 0) | 29,743 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-08-23 (+ 141 d) | 5.92M (+ 0B) | 4 (+ 0) | 20 (+ 0) | 29,743 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-04-04 (+ 196 d) | 5.92M (+ 0B) | 4 (+ 0) | 20 (+ 0) | 29,743 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-09-21 (+ 197 d) | 5.92M (+ 0B) | 4 (+ 0) | 20 (+ 0) | 29,743 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-03-07 (+ 43 d) | 5.92M (+ 0B) | 4 (+ 0) | 20 (+ 0) | 29,743 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-01-23 (+ 44 d) | 5.92M (+ 0B) | 4 (+ 0) | 20 (+ 0) | 29,743 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-12-09 (+ 29 d) | 5.92M (+ 0B) | 4 (+ 0) | 20 (+ 0) | 29,743 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-11-09 (+ 27 d) | 5.92M (- 1.19M) | 4 (+ 0) | 20 (+ 0) | 29,743 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-10-13 (+ 29 d) | 7.11M (+ 0B) | 4 (+ 0) | 20 (+ 0) | 29,743 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-09-13 (+ 34 d) | 7.11M (+ 0B) | 4 (+ 0) | 20 (+ 0) | 29,743 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-08-09 (+ 27 d) | 7.11M (+ 0B) | 4 (+ 0) | 20 (+ 0) | 29,743 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-07-12 | 7.11M | 4 | 20 | 29,743 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.