Name | n3_chennan_CS_yaodian_100yiyao_com |
---|---|
Data | 29.06M (+ 0B) |
Tables | 1 (+ 0) |
Columns | 11 (+ 0) |
Table Rows | 101,454 (+ 0) |
Media | 0B (+ 0B) |
Files | 0 (+ 0) |
Last Commit | 2023-06-19 18:36:38 (+ 169 d) |
全国101,454个药店信息数据库。每个药店有通讯地址,联系电话,营业时间,乘车路线,省份和城市。整个全国药店信息数据库只有1个表。
This China chemist's shops database is filled with 101,454 records with address, telephone number, business hour, bus line, province and city in each. The whole China chemist's shops data set totally has only 1 table.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
yaodian | 101,454 | chengshi |
97.89%
|
title |
100%
|
||
tongxun_dizhi |
100%
|
||
lianxi_dianhua |
49.82%
|
||
yingye_shijian |
4.38%
|
||
chengche_luxian |
0%
|
||
shengfen |
97.89%
|
No media sets.
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 29.06M (+ 0B) | 1 (+ 0) | 11 (+ 0) | 101,454 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2023-01-01 (+ 95 d) | 29.06M (+ 0B) | 1 (+ 0) | 11 (+ 0) | 101,454 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2022-09-27 (+ 271 d) | 29.06M (+ 0B) | 1 (+ 0) | 11 (+ 0) | 101,454 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-12-30 (+ 115 d) | 29.06M (+ 0B) | 1 (+ 0) | 11 (+ 0) | 101,454 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-09-05 (+ 150 d) | 29.06M (+ 0B) | 1 (+ 0) | 11 (+ 0) | 101,454 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-04-08 (+ 68 d) | 29.06M (+ 0B) | 1 (+ 0) | 11 (+ 0) | 101,454 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-01-29 (+ 120 d) | 29.06M (+ 1.97M) | 1 (+ 0) | 11 (+ 0) | 101,454 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-10-01 (+ 38 d) | 27.09M (+ 0B) | 1 (+ 0) | 11 (+ 0) | 101,454 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-08-23 (+ 141 d) | 27.09M (+ 0B) | 1 (+ 0) | 11 (+ 0) | 101,454 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-04-04 (+ 196 d) | 27.09M (+ 0B) | 1 (+ 0) | 11 (+ 0) | 101,454 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-09-21 (+ 197 d) | 27.09M (+ 0B) | 1 (+ 0) | 11 (+ 0) | 101,454 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-03-07 (+ 43 d) | 27.09M (+ 0B) | 1 (+ 0) | 11 (+ 0) | 101,454 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-01-23 (+ 44 d) | 27.09M (+ 0B) | 1 (+ 0) | 11 (+ 0) | 101,454 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-12-09 (+ 29 d) | 27.09M (+ 0B) | 1 (+ 0) | 11 (+ 0) | 101,454 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-11-09 (+ 27 d) | 27.09M (+ 3M) | 1 (+ 0) | 11 (+ 5) | 101,454 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-10-13 (+ 29 d) | 24.09M (+ 0B) | 1 (+ 0) | 6 (+ 0) | 101,454 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-09-13 (+ 34 d) | 24.09M (+ 0B) | 1 (+ 0) | 6 (+ 0) | 101,454 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-08-09 (+ 27 d) | 24.09M (+ 0B) | 1 (+ 0) | 6 (+ 0) | 101,454 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-07-12 | 24.09M | 1 | 6 | 101,454 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.