Name | n3_chennan_CS_yaodian_21yod_com |
---|---|
Data | 70.34M (+ 0B) |
Tables | 3 (+ 0) |
Columns | 19 (+ 0) |
Table Rows | 251,366 (+ 0) |
Media | 0B (+ 0B) |
Files | 0 (+ 0) |
Last Commit | 2023-06-19 18:36:38 (+ 169 d) |
该药店信息数据库共计有125,663个记录,每个记录中包含有地址,药店名,所在区域,联系电话和详细地址。数据中这些药店来自全国31个城市。整个全国药店信息数据库共有3个表。
In the China chemist's shops data set, there are 125,663 chemist's shops from 31 cities in China. Each chemist's shop is comprised of address, drugstore name, location, telephone number and detailed address. The whole China chemist's shops database has 3 tables in total.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
yaodian | 125,663 | lianxi_dianhua |
87.41%
|
xiangxi_dizhi |
99.68%
|
||
title |
100%
|
||
dizhi |
99.91%
|
||
yaodianming |
99.69%
|
||
suozai_quyu |
99.69%
|
||
chengshi | 31 | title |
100%
|
chengshi_x_yaodian | 125,672 | chengshi_id |
100%
|
yaodian_id |
100%
|
No media sets.
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 70.34M (+ 0B) | 3 (+ 0) | 19 (+ 0) | 251,366 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2023-01-01 (+ 95 d) | 70.34M (+ 0B) | 3 (+ 0) | 19 (+ 0) | 251,366 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2022-09-27 (+ 271 d) | 70.34M (+ 0B) | 3 (+ 0) | 19 (+ 0) | 251,366 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-12-30 (+ 115 d) | 70.34M (+ 0B) | 3 (+ 0) | 19 (+ 0) | 251,366 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-09-05 (+ 150 d) | 70.34M (+ 0B) | 3 (+ 0) | 19 (+ 0) | 251,366 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-04-08 (+ 68 d) | 70.34M (+ 0B) | 3 (+ 0) | 19 (+ 0) | 251,366 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-01-29 (+ 120 d) | 70.34M (+ 0B) | 3 (+ 0) | 19 (+ 0) | 251,366 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-10-01 (+ 38 d) | 70.34M (+ 0B) | 3 (+ 0) | 19 (+ 0) | 251,366 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-08-23 (+ 141 d) | 70.34M (+ 0B) | 3 (+ 0) | 19 (+ 0) | 251,366 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-04-04 (+ 196 d) | 70.34M (+ 0B) | 3 (+ 0) | 19 (+ 0) | 251,366 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-09-21 (+ 197 d) | 70.34M (+ 0B) | 3 (+ 0) | 19 (+ 0) | 251,366 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-03-07 (+ 43 d) | 70.34M (+ 0B) | 3 (+ 0) | 19 (+ 0) | 251,366 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-01-23 (+ 44 d) | 70.34M (+ 0B) | 3 (+ 0) | 19 (+ 0) | 251,366 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-12-09 (+ 29 d) | 70.34M (+ 0B) | 3 (+ 0) | 19 (+ 0) | 251,366 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-11-09 (+ 27 d) | 70.34M (+ 14.02M) | 3 (+ 0) | 19 (- 1) | 251,366 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-10-13 (+ 29 d) | 56.33M (+ 0B) | 3 (+ 0) | 20 (+ 0) | 251,366 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-09-13 (+ 34 d) | 56.33M (+ 0B) | 3 (+ 0) | 20 (+ 0) | 251,366 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-08-09 (+ 27 d) | 56.33M (+ 0B) | 3 (+ 0) | 20 (+ 0) | 251,366 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-07-12 | 56.33M | 3 | 20 | 251,366 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.