Name | n3_chennan_CS_zazhi_edingyue_com |
---|---|
Data | 10.33M (+ 0B) |
Tables | 6 (+ 0) |
Columns | 45 (+ 0) |
Table Rows | 25,121 (+ 0) |
Media | 76.47M (+ 0B) |
Files | 2,625 (+ 0) |
Last Commit | 2023-06-19 18:36:38 (+ 169 d) |
这是全国报纸和杂志信息数据库,共有122个类别的11,139种杂志和报纸。每种杂志和报纸记录中有出刊周期,市场价,订阅量,商品描述,浏览次数,单价,主办单位,编辑出版,主要栏目,国内统一刊号,出刊日期,发行方式,出版地,省份等。数据中还包含有2,719张图片且储存在76.47M文件包中。整个全国报纸和杂志信息数据库共有6个表。
In the newspapers and magazines database, it has 11,139 records with publishing cycle, market price, subscription, commodity description, browsing times, unit price, organizer, editing and publishing, main columns, domestic uniform number, publishing date, publishing mode, publishing place, provinces and etc. in each. These magazines and newspapers are categorized into 122 classifications. It also comes with 2,719 images of these magazines and newspapers. The whole China magazines and newspapers data totally has 6 tables.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
category_1 | 2 | title |
100%
|
category_2 | 122 | title |
100%
|
category_1_id |
100%
|
||
category_2_x_zazhi_and_baozhi | 11,139 | category_2_id |
100%
|
zazhi_and_baozhi_id |
100%
|
||
image | 2,719 | zazhi_and_baozhi_id |
100%
|
zazhi_and_baozhi | 11,139 | title |
100%
|
chukan_zhouqi |
100%
|
||
dingqi |
100%
|
||
shichangjia |
100%
|
||
dingyuejia |
100%
|
||
shangpin_miaoshu |
15.41%
|
||
liulan_cishu |
100%
|
||
danjia |
100%
|
||
zhuban_danwei |
68.7%
|
||
bianji_chuban |
52.24%
|
||
zhuyao_lanmu |
5.92%
|
||
guoji_biaozhun_kanhao |
22.54%
|
||
guonei_tongyi_kanhao |
94.07%
|
||
youfa_daihao |
93.17%
|
||
guowai_faxing_daihao |
8.92%
|
||
lianhe_zhengding_daihao |
0.08%
|
||
chuangkan_riqi |
49.7%
|
||
chukan_riqi |
84.14%
|
||
baokan_banshi |
25.34%
|
||
faxing_fangshi |
90.74%
|
||
haiwai_jiage |
0.92%
|
||
faxingliang |
12.65%
|
||
chubandi |
92.71%
|
||
shengfen |
74.76%
|
Size (Bytes) | Files |
---|---|
76.47M | 2,625 |
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 10.33M (+ 0B) | 6 (+ 0) | 45 (+ 0) | 25,121 (+ 0) | 76.47M (+ 0B) | 2,625 (+ 0) |
2023-01-01 (+ 95 d) | 10.33M (+ 0B) | 6 (+ 0) | 45 (+ 0) | 25,121 (+ 0) | 76.47M (+ 0B) | 2,625 (+ 0) |
2022-09-27 (+ 271 d) | 10.33M (+ 0B) | 6 (+ 0) | 45 (+ 0) | 25,121 (+ 0) | 76.47M (+ 0B) | 2,625 (+ 0) |
2021-12-30 (+ 115 d) | 10.33M (+ 0B) | 6 (+ 0) | 45 (+ 0) | 25,121 (+ 0) | 76.47M (+ 0B) | 2,625 (+ 0) |
2021-09-05 (+ 150 d) | 10.33M (+ 0B) | 6 (+ 0) | 45 (+ 0) | 25,121 (+ 0) | 76.47M (+ 0B) | 2,625 (+ 0) |
2021-04-08 (+ 68 d) | 10.33M (+ 0B) | 6 (+ 0) | 45 (+ 0) | 25,121 (+ 0) | 76.47M (+ 0B) | 2,625 (+ 0) |
2021-01-29 (+ 120 d) | 10.33M (+ 0B) | 6 (+ 0) | 45 (+ 0) | 25,121 (+ 0) | 76.47M (+ 0B) | 2,625 (+ 0) |
2020-10-01 (+ 38 d) | 10.33M (+ 0B) | 6 (+ 0) | 45 (+ 0) | 25,121 (+ 0) | 76.47M (+ 0B) | 2,625 (+ 0) |
2020-08-23 (+ 141 d) | 10.33M (+ 0B) | 6 (+ 0) | 45 (+ 0) | 25,121 (+ 0) | 76.47M (+ 0B) | 2,625 (+ 0) |
2020-04-04 (+ 196 d) | 10.33M (+ 0B) | 6 (+ 0) | 45 (+ 0) | 25,121 (+ 0) | 76.47M (+ 0B) | 2,625 (+ 0) |
2019-09-21 (+ 197 d) | 10.33M (+ 0B) | 6 (+ 0) | 45 (+ 0) | 25,121 (+ 0) | 76.47M (+ 0B) | 2,625 (+ 0) |
2019-03-07 (+ 43 d) | 10.33M (+ 0B) | 6 (+ 0) | 45 (+ 0) | 25,121 (+ 0) | 76.47M (+ 0B) | 2,625 (+ 0) |
2019-01-23 (+ 44 d) | 10.33M (+ 0B) | 6 (+ 0) | 45 (+ 0) | 25,121 (+ 0) | 76.47M (+ 0B) | 2,625 (+ 0) |
2018-12-09 (+ 29 d) | 10.33M (+ 0B) | 6 (+ 0) | 45 (+ 0) | 25,121 (+ 0) | 76.47M (+ 0B) | 2,625 (+ 0) |
2018-11-09 | 10.33M | 6 | 45 | 25,121 | 76.47M | 2,625 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.