Name | n3_chennan_CS_zufang_mayi_com |
---|---|
Data | 0.97M (+ 0B) |
Tables | 3 (+ 0) |
Columns | 20 (+ 0) |
Table Rows | 3,738 (+ 0) |
Media | 0B (+ 0B) |
Files | 0 (+ 0) |
Last Commit | 2023-06-19 18:36:38 (+ 169 d) |
这是全国50个城市的1,844个日租房信息数据库。每个日租房记录中包含有价格,经度,纬度,评分和附带。整个日租房信息数据库中共有3个表。
In the estate for daily rent database, there are 1,844 records from 50 cities in China. Each record consists of price, longitude, latitude, score and attach. The whole China daily house renting data set has 3 tables in total.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
category_1_x_rizufang | 1,844 | rizufang_id |
100%
|
category_1_id |
100%
|
||
rizufang | 1,844 | fudai |
98.7%
|
pingfen |
99.95%
|
||
weidu |
100%
|
||
jingdu |
100%
|
||
jiage |
100%
|
||
title |
100%
|
||
category_1 | 50 | title |
100%
|
No media sets.
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 0.97M (+ 0B) | 3 (+ 0) | 20 (+ 0) | 3,738 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2023-01-01 (+ 95 d) | 0.97M (+ 0B) | 3 (+ 0) | 20 (+ 0) | 3,738 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2022-09-27 (+ 271 d) | 0.97M (+ 0B) | 3 (+ 0) | 20 (+ 0) | 3,738 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-12-30 (+ 115 d) | 0.97M (+ 0B) | 3 (+ 0) | 20 (+ 0) | 3,738 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-09-05 (+ 150 d) | 0.97M (+ 0B) | 3 (+ 0) | 20 (+ 0) | 3,738 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-04-08 (+ 68 d) | 0.97M (+ 0B) | 3 (+ 0) | 20 (+ 0) | 3,738 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-01-29 (+ 120 d) | 0.97M (+ 0B) | 3 (+ 0) | 20 (+ 0) | 3,738 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-10-01 (+ 38 d) | 0.97M (+ 0B) | 3 (+ 0) | 20 (+ 0) | 3,738 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-08-23 (+ 141 d) | 0.97M (+ 0B) | 3 (+ 0) | 20 (+ 0) | 3,738 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-04-04 (+ 196 d) | 0.97M (+ 0B) | 3 (+ 0) | 20 (+ 0) | 3,738 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-09-21 (+ 197 d) | 0.97M (+ 0B) | 3 (+ 0) | 20 (+ 0) | 3,738 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-03-07 (+ 43 d) | 0.97M (+ 0B) | 3 (+ 0) | 20 (+ 0) | 3,738 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-01-23 (+ 44 d) | 0.97M (+ 0B) | 3 (+ 0) | 20 (+ 0) | 3,738 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-12-09 (+ 29 d) | 0.97M (+ 0B) | 3 (+ 0) | 20 (+ 0) | 3,738 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-11-09 (+ 27 d) | 0.97M (+ 0B) | 3 (+ 0) | 20 (+ 0) | 3,738 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-10-13 (+ 29 d) | 0.97M (+ 0B) | 3 (+ 0) | 20 (+ 0) | 3,738 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-09-13 (+ 34 d) | 0.97M (+ 0B) | 3 (+ 0) | 20 (+ 0) | 3,738 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-08-09 (+ 27 d) | 0.97M (+ 0B) | 3 (+ 0) | 20 (+ 0) | 3,738 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-07-12 | 0.97M | 3 | 20 | 3,738 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.