Name | n3_chennan_CS_yisheng_ysk_familydoctor_com_cn |
---|---|
Data | 387.47M (+ 0B) |
Tables | 6 (+ 0) |
Columns | 36 (+ 0) |
Table Rows | 1,401,006 (+ 0) |
Media | 656.47M (+ 0B) |
Files | 34,544 (+ 0) |
Last Commit | 2023-06-19 18:36:38 (+ 169 d) |
该医生信息数据库共有来自22个科室的155,114位医生。每位医生记录中有职务,所属单位,擅长疾病,医生介绍,出诊医院地址,出诊电话,邮政编码,传真号码,电子邮箱,乘车路线,所属科室和医生职称。整个医生信息数据库共有6个表。
This is a doctors database having 155,114 records with duty, subordinate units, be good at disease, doctor introduction, address of outpatient hospital, outpatient telephone, postal code, fax number, email, bus routes, affiliated department and doctor title in each. These doctors are from 22 departments. The whole doctors data set totally has 6 tables.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
category_3_x_yisheng | 1,245,548 | yisheng_id |
100%
|
category_3_id |
100%
|
||
yisheng | 155,114 | suoshu_danwei |
100%
|
zhiwu |
96.66%
|
||
title |
100%
|
||
shanchang_jibing |
95.93%
|
||
yisheng_zhicheng |
90.54%
|
||
suoshu_keshi |
93.78%
|
||
chengche_luxian |
74.21%
|
||
dianzi_youxiang |
51.61%
|
||
chaunzhen_haoma |
40.24%
|
||
youzheng_bianma |
93.78%
|
||
chuzhen_dianhua |
93.61%
|
||
chuzhen_yiyuan_dizhi |
93.67%
|
||
yisheng_jieshao |
89.45%
|
||
category_3 | 300 | category_2_id |
100%
|
title |
100%
|
||
category_2 | 22 | category_1_id |
100%
|
title |
100%
|
||
category_1 | 22 | title |
100%
|
Size (Bytes) | Files |
---|---|
656.47M | 34,544 |
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 387.47M (+ 0B) | 6 (+ 0) | 36 (+ 0) | 1,401,006 (+ 0) | 656.47M (+ 0B) | 34,544 (+ 0) |
2023-01-01 (+ 95 d) | 387.47M (+ 0B) | 6 (+ 0) | 36 (+ 0) | 1,401,006 (+ 0) | 656.47M (+ 0B) | 34,544 (+ 0) |
2022-09-27 (+ 271 d) | 387.47M (+ 0B) | 6 (+ 0) | 36 (+ 0) | 1,401,006 (+ 0) | 656.47M (+ 0B) | 34,544 (+ 0) |
2021-12-30 (+ 115 d) | 387.47M (+ 0B) | 6 (+ 0) | 36 (+ 0) | 1,401,006 (+ 0) | 656.47M (+ 0B) | 34,544 (+ 0) |
2021-09-05 (+ 150 d) | 387.47M (+ 0B) | 6 (+ 0) | 36 (+ 0) | 1,401,006 (+ 0) | 656.47M (+ 0B) | 34,544 (+ 0) |
2021-04-08 (+ 68 d) | 387.47M (+ 0B) | 6 (+ 0) | 36 (+ 0) | 1,401,006 (+ 0) | 656.47M (+ 0B) | 34,544 (+ 0) |
2021-01-29 (+ 120 d) | 387.47M (+ 0B) | 6 (+ 0) | 36 (+ 0) | 1,401,006 (+ 0) | 656.47M (+ 0B) | 34,544 (+ 0) |
2020-10-01 (+ 38 d) | 387.47M (+ 0B) | 6 (+ 0) | 36 (+ 0) | 1,401,006 (+ 0) | 656.47M (+ 0B) | 34,544 (+ 0) |
2020-08-23 (+ 141 d) | 387.47M (+ 0B) | 6 (+ 0) | 36 (+ 0) | 1,401,006 (+ 0) | 656.47M (+ 0B) | 34,544 (+ 0) |
2020-04-04 (+ 196 d) | 387.47M (+ 0B) | 6 (+ 0) | 36 (+ 0) | 1,401,006 (+ 0) | 656.47M (+ 0B) | 34,544 (+ 0) |
2019-09-21 (+ 197 d) | 387.47M (+ 0B) | 6 (+ 0) | 36 (+ 0) | 1,401,006 (+ 0) | 656.47M (+ 0B) | 34,544 (+ 0) |
2019-03-07 (+ 43 d) | 387.47M (+ 0B) | 6 (+ 0) | 36 (+ 0) | 1,401,006 (+ 0) | 656.47M (+ 0B) | 34,544 (+ 0) |
2019-01-23 (+ 44 d) | 387.47M (+ 0B) | 6 (+ 0) | 36 (+ 0) | 1,401,006 (+ 0) | 656.47M (+ 0B) | 34,544 (+ 0) |
2018-12-09 (+ 29 d) | 387.47M (+ 0B) | 6 (+ 0) | 36 (+ 0) | 1,401,006 (+ 0) | 656.47M (+ 0B) | 34,544 (+ 0) |
2018-11-09 (+ 27 d) | 387.47M (+ 168.19M) | 6 (+ 1) | 36 (+ 0) | 1,401,006 (+ 0) | 656.47M (+ 656.47M) | 34,544 (+ 34,544) |
2018-10-13 (+ 29 d) | 219.28M (+ 0B) | 5 (+ 0) | 36 (+ 0) | 1,401,006 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-09-13 (+ 34 d) | 219.28M (+ 0B) | 5 (+ 0) | 36 (+ 0) | 1,401,006 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-08-09 | 219.28M | 5 | 36 | 1,401,006 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.