Name | n3_lyz_howardhanna.com |
---|---|
Data | 2.14G (+ 0B) |
Tables | 23 (+ 0) |
Columns | 121 (+ 0) |
Table Rows | 7,546,436 (+ 0) |
Media | 4.25G (+ 0B) |
Files | 164,474 (+ 0) |
Last Commit | 2023-06-19 18:12:05 (+ 169 d) |
This is a agents and property database with 8,102 agents and 8,102 property over 2,585 cities from 413 counties of 227 regions in 8 states of the America. Each agent is comprised of name, office phone number, mobile phone number, voice mail, description, address, state, post code, fax number and website address and each property consists of description, price, address, state, post code, bed, bath, sq ft, type, school district, architecture, taxes, built, stories, latitude and longitude. Besides, there are exterior features with 2,210,972 records; interior feature with 206 records; 263 offices; room dimension with 921,127 records and 24 specialties. The America agents and property data also comes with 2,471,007 images in the 36.88M and 321.46M media sets. The whole United States agents and property data set totally has 23 tables.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
agent | 8,102 | name |
100%
|
office_phone |
94.43%
|
||
mobile_phone |
84.65%
|
||
voicemail |
22.43%
|
||
description |
75.97%
|
||
address |
99.54%
|
||
state |
99.54%
|
||
post_code |
99.54%
|
||
fax |
31.02%
|
||
website |
79.49%
|
||
agent_x_office | 8,079 | agent_id |
100%
|
office_id |
100%
|
||
agent_x_property | 37,638 | agent_id |
100%
|
property_id |
100%
|
||
agent_x_region | 8,065 | agent_id |
100%
|
region_id |
100%
|
||
agent_x_specialty | 26,279 | agent_id |
100%
|
specialty_id |
100%
|
||
city | 2,585 | state_id |
100%
|
city |
100%
|
||
city_x_property | 98,612 | city_id |
100%
|
property_id |
100%
|
||
county | 413 | state_id |
100%
|
county |
100%
|
||
county_x_property | 161,822 | county_id |
100%
|
property_id |
100%
|
||
exterior_feature | 2,210,972 | title |
100%
|
value |
50.88%
|
||
property_id |
100%
|
||
image_slug | 2,471,007 | property_id |
100%
|
interior_feature | 206 | title |
100%
|
value |
17.96%
|
||
letter | 26 | letter |
100%
|
letter_x_agent | 8,106 | letter_id |
100%
|
agent_id |
100%
|
||
office | 263 | office |
100%
|
property | 208,223 | description |
78.86%
|
price |
97.52%
|
||
address |
96.03%
|
||
state |
96.03%
|
||
post_code |
96.02%
|
||
bed |
64.81%
|
||
bath |
35.24%
|
||
sq_ft |
63.4%
|
||
type |
87.28%
|
||
school_district |
69.11%
|
||
architecture |
56.32%
|
||
taxes |
76.12%
|
||
built |
66.68%
|
||
stories |
41.6%
|
||
latitude |
75.4%
|
||
longitude |
75.4%
|
||
property_x_interior_feature | 1,374,652 | property_id |
100%
|
interior_feature_id |
100%
|
||
region | 227 | city |
100%
|
state |
100%
|
||
zip_code |
100%
|
||
room_dimension | 921,127 | title |
100%
|
property_id |
100%
|
||
value |
52.59%
|
||
specialty | 24 | specialty |
100%
|
state | 8 | state |
100%
|
short |
100%
|
Size (Bytes) | Files |
---|---|
321.46M | 8,067 |
Size (Bytes) | Files |
---|---|
3.94G | 156,407 |
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 2.14G (+ 0B) | 23 (+ 0) | 121 (+ 0) | 7,546,436 (+ 0) | 4.25G (+ 0B) | 164,474 (+ 0) |
2023-01-01 (+ 95 d) | 2.14G (+ 0B) | 23 (+ 0) | 121 (+ 0) | 7,546,436 (+ 0) | 4.25G (+ 0B) | 164,474 (+ 0) |
2022-09-27 (+ 271 d) | 2.14G (+ 0B) | 23 (+ 0) | 121 (+ 0) | 7,546,436 (+ 0) | 4.25G (+ 0B) | 164,474 (+ 0) |
2021-12-30 (+ 115 d) | 2.14G (+ 0B) | 23 (+ 0) | 121 (+ 0) | 7,546,436 (+ 0) | 4.25G (+ 0B) | 164,474 (+ 0) |
2021-09-05 (+ 150 d) | 2.14G (+ 0B) | 23 (+ 0) | 121 (+ 0) | 7,546,436 (+ 0) | 4.25G (+ 0B) | 164,474 (+ 0) |
2021-04-08 (+ 68 d) | 2.14G (+ 1.50G) | 23 (+ 0) | 121 (+ 0) | 7,546,436 (+ 0) | 4.25G (+ 0B) | 164,474 (+ 0) |
2021-01-29 (+ 120 d) | 655.95M (+ 0B) | 23 (+ 0) | 121 (+ 0) | 7,546,436 (+ 0) | 4.25G (+ 0B) | 164,474 (+ 0) |
2020-10-01 (+ 38 d) | 655.95M (+ 19.94M) | 23 (+ 0) | 121 (+ 0) | 7,546,436 (+ 0) | 4.25G (+ 2.15G) | 164,474 (+ 134,252) |
2020-08-23 (+ 141 d) | 636.02M (+ 3.92M) | 23 (+ 0) | 121 (+ 0) | 7,546,436 (+ 0) | 2.10G (+ 1.75G) | 30,222 (+ 21,846) |
2020-04-04 (+ 196 d) | 632.09M (+ 0B) | 23 (+ 0) | 121 (+ 0) | 7,546,436 (+ 0) | 358.33M (+ 0B) | 8,376 (+ 0) |
2019-09-21 (+ 197 d) | 632.09M (+ 0B) | 23 (+ 0) | 121 (+ 0) | 7,546,436 (+ 0) | 358.33M (+ 0B) | 8,376 (+ 0) |
2019-03-07 (+ 43 d) | 632.09M (+ 168.81M) | 23 (+ 1) | 121 (- 1) | 7,546,436 (+ 2,607,125) | 358.33M (+ 36.88M) | 8,376 (+ 309) |
2019-01-23 (+ 44 d) | 463.28M (+ 462.66M) | 22 (+ 12) | 122 (+ 78) | 4,939,311 (+ 4,938,819) | 321.46M (+ 321.45M) | 8,067 (+ 8,066) |
2018-12-09 (+ 29 d) | 640K (+ 0B) | 10 (+ 0) | 44 (+ 0) | 492 (+ 0) | 9.32K (+ 0B) | 1 (+ 0) |
2018-11-09 (+ 27 d) | 640K (+ 16K) | 10 (+ 0) | 44 (+ 0) | 492 (+ 0) | 9.32K (+ 0B) | 1 (+ 0) |
2018-10-13 (+ 29 d) | 624K (+ 0B) | 10 (+ 0) | 44 (+ 0) | 492 (+ 0) | 9.32K (+ 0B) | 1 (+ 0) |
2018-09-13 (+ 34 d) | 624K (+ 0B) | 10 (+ 0) | 44 (+ 0) | 492 (+ 0) | 9.32K (+ 0B) | 1 (+ 0) |
2018-08-09 (+ 27 d) | 624K (+ 0B) | 10 (+ 0) | 44 (+ 0) | 492 (+ 0) | 9.32K (+ 0B) | 1 (+ 0) |
2018-07-12 (+ 31 d) | 624K (+ 0B) | 10 (+ 0) | 44 (+ 0) | 492 (+ 0) | 9.32K (+ 0B) | 1 (+ 0) |
2018-06-10 (+ 31 d) | 624K (+ 0B) | 10 (+ 0) | 44 (+ 0) | 492 (+ 0) | 9.32K (+ 0B) | 1 (+ 0) |
2018-05-10 (+ 28 d) | 624K (+ 0B) | 10 (+ 0) | 44 (+ 0) | 492 (+ 0) | 9.32K (+ 0B) | 1 (+ 0) |
2018-04-11 | 624K | 10 | 44 | 492 | 9.32K | 1 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.