Name | n3_lyz_meeting.ctrip.com |
---|---|
Data | 511.03M (+ 0B) |
Tables | 10 (+ 0) |
Columns | 70 (+ 0) |
Table Rows | 3,086,833 (+ 0) |
Media | 39.18M (+ 0B) |
Files | 1,488 (+ 0) |
Last Commit | 2023-06-19 18:12:05 (+ 169 d) |
这是一个酒店会议厅数据库,共包含有来自全国2,331个城市的37,131个酒店会议厅。每个会议厅中有描述,风格,星级,区域,地址, 会议厅数量,会议厅面积,容量,房间数量,开放时间,总评分,团购价格,长期订购价格,会议价格,推荐范围,评论数,翻新和电话。整个酒店会议数据库中有其它4个表和酒店会议厅密切相关,它们分别是206,387个酒店设备;2,463,657个酒店设备详情记录且每个记录中有内容;2,605个过去会议记录和0个会议房间的记录及每个记录中有描述。整个酒店会议厅数据中还包含有331,221张会议厅图片且存储在39.18M的媒体文件夹中。该酒店会议厅数据库共有10个表。
This is a hotel meetings information database with 37,131 records from 2,331 cities of China.
Each record is comprised of description, hotel, style, star 1, star 2, district, address, meet room count, meet room area, meet room capability, room count, open time, score overall, group price from, long price from, meeting price from, recommendation scale, comment count, renovation and telephone. It has other 4 tables mostly related with these hotel meetings, they are 206,387 hotel facility records; 2,463,657 hotel facility detail records with content in each; 2,605 meeting past records and 0 meeting room records with description in each. This China hotel meeting data also comes with 331,221 images of these hotel meetings.
The whole China hotel meetings data set totaly has 10 tables.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
city | 2,331 | city |
100%
|
city_b | 2,331 | city |
100%
|
city_x_hotel_meeting | 41,170 | hotel_meeting_id |
100%
|
city_id |
100%
|
||
hotel_facility | 206,387 | title |
100%
|
hotel_meeting_id |
100%
|
||
hotel_facility_detail | 2,463,657 | content |
100%
|
hotel_facility_id |
100%
|
||
hotel_meeting | 37,131 | description |
0.25%
|
hotel |
99.98%
|
||
style |
99.76%
|
||
star_1 |
99.76%
|
||
star_2 |
99.75%
|
||
district |
69.27%
|
||
address |
100%
|
||
meet_room_count |
12.6%
|
||
meet_room_area |
100%
|
||
meet_room_capability |
100%
|
||
room_count |
100%
|
||
open_time |
100%
|
||
score_overall |
99.01%
|
||
group_price_from |
95.82%
|
||
long_price_from |
91.44%
|
||
meeting_price_from |
12.97%
|
||
recommendation_scale |
99.01%
|
||
comment_count |
99.01%
|
||
renovation |
47.94%
|
||
telephone |
99.57%
|
||
image_slug | 331,221 | hotel_meeting_id |
100%
|
iamge_title |
100%
|
||
meeting_past | 2,605 | meeting_past |
95.97%
|
hotel_meeting_id |
100%
|
||
meeting_room | 0 | title |
0%
|
description |
0%
|
||
hotel_meeting_id |
0%
|
Size (Bytes) | Files |
---|---|
39.18M | 1,488 |
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 511.03M (+ 0B) | 10 (+ 0) | 70 (+ 0) | 3,086,833 (+ 0) | 39.18M (+ 0B) | 1,488 (+ 0) |
2023-01-01 (+ 95 d) | 511.03M (+ 0B) | 10 (+ 0) | 70 (+ 0) | 3,086,833 (+ 0) | 39.18M (+ 0B) | 1,488 (+ 0) |
2022-09-27 (+ 271 d) | 511.03M (+ 0B) | 10 (+ 0) | 70 (+ 0) | 3,086,833 (+ 0) | 39.18M (+ 0B) | 1,488 (+ 0) |
2021-12-30 (+ 115 d) | 511.03M (+ 0B) | 10 (+ 0) | 70 (+ 0) | 3,086,833 (+ 0) | 39.18M (+ 0B) | 1,488 (+ 0) |
2021-09-05 (+ 150 d) | 511.03M (+ 0B) | 10 (+ 0) | 70 (+ 0) | 3,086,833 (+ 0) | 39.18M (+ 0B) | 1,488 (+ 0) |
2021-04-08 (+ 68 d) | 511.03M (+ 143.22M) | 10 (+ 0) | 70 (+ 0) | 3,086,833 (+ 0) | 39.18M (+ 0B) | 1,488 (+ 0) |
2021-01-29 (+ 120 d) | 367.81M (+ 0B) | 10 (+ 0) | 70 (+ 0) | 3,086,833 (+ 0) | 39.18M (+ 0B) | 1,488 (+ 0) |
2020-10-01 (+ 38 d) | 367.81M (+ 0B) | 10 (+ 0) | 70 (+ 0) | 3,086,833 (+ 0) | 39.18M (+ 0B) | 1,488 (+ 0) |
2020-08-23 (+ 141 d) | 367.81M (+ 0B) | 10 (+ 0) | 70 (+ 0) | 3,086,833 (+ 0) | 39.18M (+ 0B) | 1,488 (+ 0) |
2020-04-04 (+ 196 d) | 367.81M (+ 0B) | 10 (+ 0) | 70 (+ 0) | 3,086,833 (+ 0) | 39.18M (+ 0B) | 1,488 (+ 0) |
2019-09-21 (+ 197 d) | 367.81M (+ 345.92M) | 10 (+ 0) | 70 (+ 3) | 3,086,833 (+ 3,003,870) | 39.18M (+ 39.18M) | 1,488 (+ 1,488) |
2019-03-07 (+ 43 d) | 21.89M (+ 13.33M) | 10 (+ 1) | 67 (+ 10) | 82,963 (+ 52,908) | 0B (+ 0B) | 0 (+ 0) |
2019-01-23 (+ 44 d) | 8.56M (+ 7.39M) | 9 (+ 0) | 57 (- 3) | 30,055 (+ 26,552) | 0B (- 35.18K) | 0 (- 1) |
2018-12-09 (+ 29 d) | 1.17M (+ 0B) | 9 (+ 0) | 60 (+ 0) | 3,503 (+ 0) | 35.18K (+ 0B) | 1 (+ 0) |
2018-11-09 (+ 27 d) | 1.17M (+ 48K) | 9 (+ 0) | 60 (+ 0) | 3,503 (+ 0) | 35.18K (+ 0B) | 1 (+ 0) |
2018-10-13 (+ 29 d) | 1.12M (+ 0B) | 9 (+ 0) | 60 (+ 0) | 3,503 (+ 0) | 35.18K (+ 0B) | 1 (+ 0) |
2018-09-13 (+ 34 d) | 1.12M (+ 0B) | 9 (+ 0) | 60 (+ 0) | 3,503 (+ 0) | 35.18K (+ 0B) | 1 (+ 0) |
2018-08-09 (+ 27 d) | 1.12M (+ 0B) | 9 (+ 0) | 60 (+ 0) | 3,503 (+ 0) | 35.18K (+ 0B) | 1 (+ 0) |
2018-07-12 (+ 31 d) | 1.12M (+ 0B) | 9 (+ 0) | 60 (+ 0) | 3,503 (+ 0) | 35.18K (+ 0B) | 1 (+ 0) |
2018-06-10 | 1.12M | 9 | 60 | 3,503 | 35.18K | 1 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.