Name | n3_lyz_meituan.com/xiuxianyule |
---|---|
Data | 1.36G (+ 0B) |
Tables | 15 (+ 0) |
Columns | 105 (+ 0) |
Table Rows | 2,575,059 (+ 0) |
Media | 206.35M (+ 0B) |
Files | 1,355 (+ 0) |
Last Commit | 2023-06-19 18:12:05 (+ 169 d) |
这是一个娱乐场所数据库,共包含有来自全国1,180个城市,3,451个区域, 13,149个街道的93,329个娱乐场所记录,这些娱乐场所被分为181个类别。每个娱乐场所记录中有描述,娱乐,地址,最低价格,总评分,评论数,经度,纬度,区域,街道,电话,营业时间和人均消费量。整个娱乐场所数据库中有其它4个表和娱乐场所密切相关,它们分别是383,863个娱乐评论记录且每个记录中有独特性,星级指数,时间,用户智能终端数据,用户名称及用户级别;609,667个娱乐评论标记记录且每个记录中有内容和点击数量;398,202个服务项目记录且每个记录中有总结,价格,原价,折后价格,折扣,时间,异常时间,预定,适合的人,规则,服务,详细内容和内容描述以及49,293个其它服务项目记录。整个娱乐场所数据中还包含有475,752张娱乐场所图片且存储在206.35M的媒体文件夹中。该全国娱乐场所数据库共有15个表。
This is an entertainments database with 93,329 records by 181 categories. All these entertainments are from 13,149 streets of 3,451 areas in 1,180 cities of China.
Each record is comprised of description, entertainment, address, lowest price, score overall, comment count, latitude, longitude, area, street, telephone, opentime and per capita consumption. There are 5 tables mostly related with these entertainments, they are 383,863 entertainment comment records with uniq, comment, entertainment id, title, star index, time, user idt, user name and user level in each; 609,667entertainment comment mark records with content and count in each; 398,202 service item records with entertainment id, summary, price, original price, title, discount price, discount, time, exception time, book, people fit for, rule, service, detail content and content description in each and 49,293 other service records. This China entertainments data also comes with 475,752 images of these entertainments and they are keeped in the 206.35M media set.
The whole China entertainments data set totaly has 15 tables.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
area | 3,451 | area |
100%
|
city_id |
100%
|
||
category | 181 | category |
100%
|
city | 1,180 | city |
100%
|
city_x_category | 12,115 | city_id |
100%
|
category_id |
100%
|
||
city_x_category_x_entertainment | 105,035 | city_x_category_id |
100%
|
entertainment_id |
100%
|
||
comment_image_slug | 429,839 | entertainment_comment_id |
100%
|
entertainment | 93,329 | description |
0%
|
entertainment |
100%
|
||
address |
100%
|
||
lowest_price |
100%
|
||
score_overall |
100%
|
||
comment_count |
100%
|
||
latitude |
100%
|
||
longitude |
100%
|
||
area |
100%
|
||
street |
51.51%
|
||
telephone |
95.66%
|
||
opentime |
93.02%
|
||
per_capita_consumption |
100%
|
||
entertainment_comment | 383,863 | uniq |
100%
|
comment |
100%
|
||
entertainment_id |
100%
|
||
title |
92.25%
|
||
star_index |
100%
|
||
time |
100%
|
||
user_idt |
100%
|
||
user_name |
99.99%
|
||
userlevel |
100%
|
||
entertainment_comment_mark | 609,667 | content |
100%
|
count |
100%
|
||
entertainment_id |
100%
|
||
image_slug | 475,752 | entertainment_id |
100%
|
opentime |
0%
|
||
other_service | 49,293 | other_service |
100%
|
entertainment_id |
100%
|
||
service_item | 398,202 | entertainment_id |
100%
|
summary |
98.13%
|
||
price |
0%
|
||
original_price |
98.13%
|
||
title |
98.13%
|
||
discount_price |
98.13%
|
||
discount |
98.13%
|
||
time |
98.1%
|
||
exception_time |
18.7%
|
||
book |
98.1%
|
||
people_fit_for |
18.48%
|
||
rule |
98.1%
|
||
service |
57.46%
|
||
detail_content |
98.06%
|
||
content_description |
59.56%
|
||
service_item_detail | 3 | content |
100%
|
service_item_id |
100%
|
||
count |
66.67%
|
||
price |
100%
|
||
entertainment_id |
0%
|
||
totle_price |
100%
|
||
street | 13,149 | street |
100%
|
area_id |
100%
|
Size (Bytes) | Files |
---|---|
206.35M | 1,355 |
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 1.36G (+ 0B) | 15 (+ 0) | 105 (+ 0) | 2,575,059 (+ 0) | 206.35M (+ 0B) | 1,355 (+ 0) |
2023-01-01 (+ 95 d) | 1.36G (+ 0B) | 15 (+ 0) | 105 (+ 0) | 2,575,059 (+ 0) | 206.35M (+ 0B) | 1,355 (+ 0) |
2022-09-27 (+ 271 d) | 1.36G (+ 0B) | 15 (+ 0) | 105 (+ 0) | 2,575,059 (+ 0) | 206.35M (+ 0B) | 1,355 (+ 0) |
2021-12-30 (+ 115 d) | 1.36G (+ 0B) | 15 (+ 0) | 105 (+ 0) | 2,575,059 (+ 0) | 206.35M (+ 0B) | 1,355 (+ 0) |
2021-09-05 (+ 150 d) | 1.36G (+ 0B) | 15 (+ 0) | 105 (+ 0) | 2,575,059 (+ 0) | 206.35M (+ 0B) | 1,355 (+ 0) |
2021-04-08 (+ 68 d) | 1.36G (+ 1.16G) | 15 (+ 0) | 105 (+ 0) | 2,575,059 (+ 0) | 206.35M (+ 0B) | 1,355 (+ 0) |
2021-01-29 (+ 120 d) | 212.17M (+ 0B) | 15 (+ 0) | 105 (+ 0) | 2,575,059 (+ 0) | 206.35M (+ 0B) | 1,355 (+ 0) |
2020-10-01 (+ 38 d) | 212.17M (+ 0B) | 15 (+ 0) | 105 (+ 0) | 2,575,059 (+ 0) | 206.35M (+ 0B) | 1,355 (+ 0) |
2020-08-23 (+ 141 d) | 212.17M (+ 0B) | 15 (+ 0) | 105 (+ 0) | 2,575,059 (+ 0) | 206.35M (+ 0B) | 1,355 (+ 0) |
2020-04-04 (+ 196 d) | 212.17M (+ 0B) | 15 (+ 0) | 105 (+ 0) | 2,575,059 (+ 0) | 206.35M (+ 0B) | 1,355 (+ 0) |
2019-09-21 (+ 197 d) | 212.17M (+ 146.30M) | 15 (+ 0) | 105 (+ 22) | 2,575,059 (+ 2,243,137) | 206.35M (+ 206.26M) | 1,355 (+ 1,354) |
2019-03-07 (+ 43 d) | 65.88M (+ 50.25M) | 15 (+ 0) | 83 (+ 0) | 331,922 (+ 271,751) | 85.78K (+ 0B) | 1 (+ 0) |
2019-01-23 (+ 44 d) | 15.62M (+ 14.55M) | 15 (+ 0) | 83 (+ 1) | 60,171 (+ 58,871) | 85.78K (+ 0B) | 1 (+ 0) |
2018-12-09 (+ 29 d) | 1.08M (+ 0B) | 15 (+ 0) | 82 (+ 0) | 1,300 (+ 0) | 85.78K (+ 0B) | 1 (+ 0) |
2018-11-09 (+ 27 d) | 1.08M (+ 80K) | 15 (+ 0) | 82 (+ 0) | 1,300 (+ 0) | 85.78K (+ 0B) | 1 (+ 0) |
2018-10-13 (+ 29 d) | 1M (+ 0B) | 15 (+ 0) | 82 (+ 0) | 1,300 (+ 0) | 85.78K (+ 0B) | 1 (+ 0) |
2018-09-13 | 1M | 15 | 82 | 1,300 | 85.78K | 1 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.