Name | n3_lyz_tripadvisor.cn_log |
---|---|
Data | 334.39M (+ 0B) |
Tables | 12 (+ 0) |
Columns | 54 (+ 0) |
Table Rows | 313,930 (+ 0) |
Media | 106.53M (+ 0B) |
Files | 2,000 (+ 0) |
Last Commit | 2023-06-19 18:12:05 (+ 169 d) |
这是一个包含有全球9大洲,123个地区和4,126个城市的旅游游记数据库。该全球旅游游记数据库中有5,351篇游记,每篇游记记录有描述,出发数据和持续时间。这些游记是由1,461个作者撰写而成。在表游记内容中有37,263个记录且每个记录中有总结,标题和线路。除此之外,数据库中还有80,418张游记图片且存储在106.53M文件夹中。整个全球旅游游记数据库共有12个表。
With 5,351 tourism logs by 1,461 authors, this is a global tourism logs database.
Each tourism log is comprised of description, set out data and duration. All these tourism logs are about 4,126 line cities from 123regions of 9 continents around the world. In table log content, it has 37,263 records with summary, title and line spot in each. It also comes with 80,418 log images in the 106.53M media set.
The whole global tourism logs data set totaly has 12 tables.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
region | 123 | region |
100%
|
continent_id |
100%
|
||
log_x_author | 2,833 | log_id |
100%
|
author_id |
100%
|
||
log_x_line_city | 16,514 | log_id |
100%
|
line_city_id |
100%
|
||
region_x_log | 5,999 | region_id |
100%
|
log_id |
100%
|
||
log_content_detail | 159,833 | log_content_id |
100%
|
description |
98.46%
|
||
title |
99.75%
|
||
author | 1,461 | author |
99.93%
|
continent | 9 | continent |
100%
|
image_slug | 80,418 | log_content_id |
100%
|
title |
0%
|
||
line_city | 4,126 | line_city |
100%
|
log | 5,351 | description |
0%
|
set_out_data |
98.17%
|
||
title |
100%
|
||
duration |
100%
|
||
log_content | 37,263 | summary |
96.3%
|
log_id |
100%
|
||
title |
100%
|
||
line_spot |
99.66%
|
Size (Bytes) | Files |
---|---|
106.53M | 2,000 |
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 334.39M (+ 0B) | 12 (+ 0) | 54 (+ 0) | 313,930 (+ 0) | 106.53M (+ 0B) | 2,000 (+ 0) |
2023-01-01 (+ 95 d) | 334.39M (+ 0B) | 12 (+ 0) | 54 (+ 0) | 313,930 (+ 0) | 106.53M (+ 0B) | 2,000 (+ 0) |
2022-09-27 (+ 271 d) | 334.39M (+ 0B) | 12 (+ 0) | 54 (+ 0) | 313,930 (+ 0) | 106.53M (+ 0B) | 2,000 (+ 0) |
2021-12-30 (+ 115 d) | 334.39M (+ 0B) | 12 (+ 0) | 54 (+ 0) | 313,930 (+ 0) | 106.53M (+ 0B) | 2,000 (+ 0) |
2021-09-05 (+ 150 d) | 334.39M (+ 0B) | 12 (+ 0) | 54 (+ 0) | 313,930 (+ 0) | 106.53M (+ 0B) | 2,000 (+ 0) |
2021-04-08 (+ 68 d) | 334.39M (+ 202.59M) | 12 (+ 0) | 54 (+ 0) | 313,930 (+ 0) | 106.53M (+ 0B) | 2,000 (+ 0) |
2021-01-29 (+ 120 d) | 131.80M (+ 0B) | 12 (+ 0) | 54 (+ 0) | 313,930 (+ 0) | 106.53M (+ 0B) | 2,000 (+ 0) |
2020-10-01 (+ 38 d) | 131.80M (+ 0B) | 12 (+ 0) | 54 (+ 0) | 313,930 (+ 0) | 106.53M (+ 0B) | 2,000 (+ 0) |
2020-08-23 (+ 141 d) | 131.80M (+ 0B) | 12 (+ 0) | 54 (+ 0) | 313,930 (+ 0) | 106.53M (+ 0B) | 2,000 (+ 0) |
2020-04-04 (+ 196 d) | 131.80M (+ 0B) | 12 (+ 0) | 54 (+ 0) | 313,930 (+ 0) | 106.53M (+ 0B) | 2,000 (+ 0) |
2019-09-21 (+ 197 d) | 131.80M (+ 119.16M) | 12 (+ 0) | 54 (+ 0) | 313,930 (+ 264,057) | 106.53M (+ 106.47M) | 2,000 (+ 1,999) |
2019-03-07 (+ 43 d) | 12.64M (+ 11.91M) | 12 (+ 0) | 54 (+ 0) | 49,873 (+ 49,535) | 51.98K (+ 0B) | 1 (+ 0) |
2019-01-23 (+ 44 d) | 752K (+ 0B) | 12 (+ 0) | 54 (+ 0) | 338 (+ 0) | 51.98K (+ 0B) | 1 (+ 0) |
2018-12-09 (+ 29 d) | 752K (+ 0B) | 12 (+ 0) | 54 (+ 0) | 338 (+ 0) | 51.98K (+ 0B) | 1 (+ 0) |
2018-11-09 (+ 27 d) | 752K (+ 16K) | 12 (+ 0) | 54 (+ 0) | 338 (+ 0) | 51.98K (+ 0B) | 1 (+ 0) |
2018-10-13 (+ 29 d) | 736K (+ 0B) | 12 (+ 0) | 54 (+ 0) | 338 (+ 0) | 51.98K (+ 0B) | 1 (+ 0) |
2018-09-13 | 736K | 12 | 54 | 338 | 51.98K | 1 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.