Name | n3_lyz_comparecards.com |
---|---|
Data | 816K (+ 0B) |
Tables | 7 (+ 0) |
Columns | 61 (+ 0) |
Table Rows | 938 (+ 0) |
Media | 8.07M (+ 0B) |
Files | 84 (+ 0) |
Last Commit | 2023-06-19 18:12:05 (+ 169 d) |
This is a credit cards database with 84 records by 5 primary categories (Lowest Rates, Reward Program, Top Companies, Card Types and Credit Rating) and 27 sub-categories, such as Low Interest, Rewards, Chase, Discover, MasterCard, etc. Each record is comprised of title, image slug, regular purchase/intro purchase/intro bt apr etc. In the credit cards data set, there are other 2 improtant tables of related with these credit cards, they are card highlight with 498 records and 84 card review records with expert review, bottom line, good, not good, regular apr, intro apr, fee, benefit, overall, consumer review 5star / 4star / 3star / 2star / 1star and card in each. The whole United States credit cards data set consists of 7 tables.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
card | 84 | title |
100%
|
image_slug |
100%
|
||
regular_purchase_apr |
83.33%
|
||
intro_purchase_apr |
82.14%
|
||
intro_bt_apr |
83.33%
|
||
annual_fee |
83.33%
|
||
credit_needed |
83.33%
|
||
card_brand |
83.33%
|
||
transaction_fee |
83.33%
|
||
transfer_fee |
78.57%
|
||
penalty_apr |
61.9%
|
||
rewards_rate |
78.57%
|
||
zero_fraud_liability |
69.05%
|
||
extended_warranty_program |
69.05%
|
||
auto_rental_insurance |
69.05%
|
||
roadside_assistance |
69.05%
|
||
purchase_protection |
69.05%
|
||
travel_assistance |
69.05%
|
||
flight_accident_insurance |
69.05%
|
||
lost_luggage_reimbursement |
69.05%
|
||
concierge_service |
69.05%
|
||
cash_advance_fee |
2.38%
|
||
card_highlight | 498 | title |
100%
|
card_id |
100%
|
||
card |
100%
|
||
card_review | 68 | expert_review |
100%
|
bottom_line |
100%
|
||
good |
100%
|
||
not_good |
100%
|
||
regular_apr |
98.53%
|
||
intro_apr |
89.71%
|
||
fee |
100%
|
||
benefit |
98.53%
|
||
overall |
100%
|
||
consumer_review_5star |
97.06%
|
||
consumer_review_4star |
97.06%
|
||
consumer_review_3star |
97.06%
|
||
consumer_review_2star |
97.06%
|
||
consumer_review_1star |
97.06%
|
||
card_id |
100%
|
||
card |
100%
|
||
category_1 | 5 | title |
100%
|
category_2 | 27 | title |
100%
|
category_1_id |
100%
|
||
category_1 |
100%
|
||
category_2_x_card | 256 | category_2_id |
100%
|
card_id |
100%
|
Size (Bytes) | Files |
---|---|
8.07M | 84 |
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 816K (+ 0B) | 7 (+ 0) | 61 (+ 0) | 938 (+ 0) | 8.07M (+ 0B) | 84 (+ 0) |
2023-01-01 (+ 95 d) | 816K (+ 0B) | 7 (+ 0) | 61 (+ 0) | 938 (+ 0) | 8.07M (+ 0B) | 84 (+ 0) |
2022-09-27 (+ 271 d) | 816K (+ 0B) | 7 (+ 0) | 61 (+ 0) | 938 (+ 0) | 8.07M (+ 0B) | 84 (+ 0) |
2021-12-30 (+ 115 d) | 816K (+ 0B) | 7 (+ 0) | 61 (+ 0) | 938 (+ 0) | 8.07M (+ 0B) | 84 (+ 0) |
2021-09-05 (+ 150 d) | 816K (+ 0B) | 7 (+ 0) | 61 (+ 0) | 938 (+ 0) | 8.07M (+ 0B) | 84 (+ 0) |
2021-04-08 (+ 68 d) | 816K (+ 0B) | 7 (+ 0) | 61 (+ 0) | 938 (+ 0) | 8.07M (+ 0B) | 84 (+ 0) |
2021-01-29 (+ 120 d) | 816K (+ 0B) | 7 (+ 0) | 61 (+ 0) | 938 (+ 0) | 8.07M (+ 0B) | 84 (+ 0) |
2020-10-01 (+ 38 d) | 816K (+ 0B) | 7 (+ 0) | 61 (+ 0) | 938 (+ 0) | 8.07M (+ 0B) | 84 (+ 0) |
2020-08-23 (+ 141 d) | 816K (+ 0B) | 7 (+ 0) | 61 (+ 0) | 938 (+ 0) | 8.07M (+ 0B) | 84 (+ 0) |
2020-04-04 (+ 196 d) | 816K (+ 0B) | 7 (+ 0) | 61 (+ 0) | 938 (+ 0) | 8.07M (+ 0B) | 84 (+ 0) |
2019-09-21 (+ 197 d) | 816K (+ 0B) | 7 (+ 0) | 61 (+ 0) | 938 (+ 0) | 8.07M (+ 0B) | 84 (+ 0) |
2019-03-07 (+ 43 d) | 816K (+ 0B) | 7 (+ 0) | 61 (+ 0) | 938 (+ 0) | 8.07M (+ 0B) | 84 (+ 0) |
2019-01-23 (+ 44 d) | 816K (+ 0B) | 7 (+ 0) | 61 (+ 0) | 938 (+ 0) | 8.07M (+ 0B) | 84 (+ 0) |
2018-12-09 (+ 29 d) | 816K (+ 0B) | 7 (+ 0) | 61 (+ 0) | 938 (+ 0) | 8.07M (+ 0B) | 84 (+ 0) |
2018-11-09 (+ 27 d) | 816K (+ 224K) | 7 (+ 0) | 61 (+ 0) | 938 (+ 0) | 8.07M (+ 0B) | 84 (+ 0) |
2018-10-13 (+ 29 d) | 592K (+ 0B) | 7 (+ 0) | 61 (+ 0) | 938 (+ 0) | 8.07M (+ 0B) | 84 (+ 0) |
2018-09-13 (+ 34 d) | 592K (+ 0B) | 7 (+ 0) | 61 (+ 0) | 938 (+ 0) | 8.07M (+ 0B) | 84 (+ 0) |
2018-08-09 (+ 27 d) | 592K (+ 0B) | 7 (+ 0) | 61 (+ 0) | 938 (+ 0) | 8.07M (+ 0B) | 84 (+ 0) |
2018-07-12 (+ 31 d) | 592K (+ 0B) | 7 (+ 0) | 61 (+ 0) | 938 (+ 0) | 8.07M (+ 0B) | 84 (+ 0) |
2018-06-10 (+ 31 d) | 592K (+ 0B) | 7 (+ 0) | 61 (+ 0) | 938 (+ 0) | 8.07M (+ 0B) | 84 (+ 0) |
2018-05-10 (+ 28 d) | 592K (+ 0B) | 7 (+ 0) | 61 (+ 0) | 938 (+ 0) | 8.07M (+ 0B) | 84 (+ 0) |
2018-04-11 (+ 38 d) | 592K (+ 0B) | 7 (+ 0) | 61 (+ 0) | 938 (+ 0) | 8.07M (+ 0B) | 84 (+ 0) |
2018-03-03 (+ 35 d) | 592K (+ 0B) | 7 (+ 0) | 61 (+ 0) | 938 (+ 0) | 8.07M (+ 0B) | 84 (+ 0) |
2018-01-27 (+ 29 d) | 592K (+ 32K) | 7 (+ 0) | 61 (+ 0) | 938 (- 12) | 8.07M (+ 0B) | 84 (+ 0) |
2017-12-29 (+ 20 d) | 560K (+ 0B) | 7 (+ 0) | 61 (+ 0) | 950 (+ 0) | 8.07M (+ 0B) | 84 (+ 0) |
2017-12-08 (+ 9 d) | 560K (+ 0B) | 7 (+ 0) | 61 (+ 0) | 950 (+ 0) | 8.07M (+ 0B) | 84 (+ 0) |
2017-11-28 (+ 19 d) | 560K (+ 0B) | 7 (+ 0) | 61 (+ 0) | 950 (+ 0) | 8.07M (+ 0B) | 84 (+ 0) |
2017-11-09 (+ 10 d) | 560K (+ 64K) | 7 (+ 0) | 61 (+ 0) | 950 (- 2) | 8.07M (+ 0B) | 84 (+ 0) |
2017-10-29 | 496K | 7 | 61 | 952 | 8.07M | 84 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.