Name | n3_lyz_visitrussia.com |
---|---|
Data | 23.94M (+ 0B) |
Tables | 27 (+ 0) |
Columns | 140 (+ 0) |
Table Rows | 36,773 (+ 0) |
Media | 620.04M (+ 0B) |
Files | 19,571 (+ 0) |
Last Commit | 2023-06-19 18:12:05 (+ 169 d) |
This is a fields-rich hotels database with 636 records in 81 popular cities of Russia. Each hotel is comprised of title, class, address, city, description, hotel information, city hotel id, room amount and etc. Besises, there are table city theater of 6 records with city, address and description in each, city train of 10 records with description, image slug and city in each, city transfer of 525 records with car user, car luggage, car hand luggage, model, price, image slug, description and city in each and table excursion of 67 with class, price from, city, description, city and duration in each. The Russia hotels data also contains 2,316 rooms and 5,731 room prices with price from, room & type.
In the Russia hotels database, there are images of city, excursion, hotel, place, theather, train, transfer and table city image slug with 469 records in the 61.09M media set; table excursion image slug consists of 283 records in the 40.56M media set; it has 24,659 hotel image slug in the 376.16M media set of this hotel image table; it consists of 654 place image slug in the 86.57M media set and there are 457 theater image slug records in the 40.03M media set. In the media sets of this data, it also has 883.30K train images media set and 14.76M transfer image meida set.
The whole Russian hotels data set consists of 27 tables.
No samples defined.
No APIs defined.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
city | 81 | city |
100%
|
description |
92.59%
|
||
place_slug |
12.35%
|
||
excursion_slug |
24.69%
|
||
tour_packages_slug |
92.59%
|
||
transfer_slug |
92.59%
|
||
theater_slug |
92.59%
|
||
train_slug |
92.59%
|
||
city_hotel | 29 | city |
100%
|
city_image_slug | 469 | image_slug |
100%
|
city |
100%
|
||
city_id |
100%
|
||
city_theater | 6 | title |
100%
|
city |
100%
|
||
city_id |
100%
|
||
address |
100%
|
||
description |
100%
|
||
city_train | 10 | title |
100%
|
description |
80%
|
||
image_slug |
100%
|
||
city |
100%
|
||
city_id |
100%
|
||
city_transfer | 525 | title |
100%
|
car_user |
100%
|
||
car_luggage |
100%
|
||
car_hand_luggage |
100%
|
||
model |
100%
|
||
price |
16.57%
|
||
image_slug |
100%
|
||
description |
100%
|
||
city |
100%
|
||
city_id |
100%
|
||
excursion | 67 | title |
100%
|
class |
11.94%
|
||
price_from |
100%
|
||
city |
100%
|
||
description |
98.51%
|
||
city_id |
100%
|
||
duration |
100%
|
||
excursion_image_slug | 283 | image_slug |
100%
|
excursion |
100%
|
||
excursion_id |
100%
|
||
hotel | 636 | title |
100%
|
class |
100%
|
||
address |
100%
|
||
city |
100%
|
||
description |
99.21%
|
||
hotel_info |
98.11%
|
||
important_info |
34.12%
|
||
cancellation |
54.4%
|
||
children |
54.4%
|
||
accommodation_info |
36.32%
|
||
city_hotel_id |
100%
|
||
room_amount |
98.11%
|
||
internet |
54.4%
|
||
check_in |
98.11%
|
||
check_out |
98.11%
|
||
location |
6.29%
|
||
distance |
6.13%
|
||
parking |
54.4%
|
||
pets |
54.4%
|
||
prepay |
54.4%
|
||
preauthorize |
54.4%
|
||
extra_charges |
45.13%
|
||
hotel_image_slug | 24,659 | image_slug |
100%
|
hotel_id |
100%
|
||
hotel |
100%
|
||
hotel_room | 2,316 | room |
100%
|
hotel_id |
100%
|
||
place | 152 | place |
100%
|
class |
12.5%
|
||
city |
100%
|
||
description |
96.71%
|
||
city_id |
100%
|
||
place_image_slug | 654 | image_slug |
100%
|
place |
100%
|
||
place_id |
100%
|
||
related_excursion | 22 | excursion |
100%
|
related_excursion_x_excursion | 174 | excursion_id |
100%
|
related_excursion_id |
100%
|
||
related_place | 108 | place |
100%
|
related_place_x_excursion | 353 | excursion_id |
100%
|
related_place_id |
100%
|
||
room_price | 5,731 | type |
100%
|
price_from |
100%
|
||
room |
100%
|
||
hotel_room_id |
100%
|
||
star_hotel_slug | 41 | title |
100%
|
city |
100%
|
||
theater_image_slug | 457 | image_slug |
100%
|
city_theater_id |
100%
|
||
theater |
100%
|
Size (Bytes) | Files |
---|---|
61.09M | 469 |
Size (Bytes) | Files |
---|---|
40.56M | 283 |
Size (Bytes) | Files |
---|---|
376.16M | 17,173 |
Size (Bytes) | Files |
---|---|
86.57M | 654 |
Size (Bytes) | Files |
---|---|
40.03M | 457 |
Size (Bytes) | Files |
---|---|
883.30K | 10 |
Size (Bytes) | Files |
---|---|
14.76M | 525 |
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 23.94M (+ 0B) | 27 (+ 0) | 140 (+ 0) | 36,773 (+ 0) | 620.04M (+ 0B) | 19,571 (+ 0) |
2023-01-01 (+ 95 d) | 23.94M (+ 0B) | 27 (+ 0) | 140 (+ 0) | 36,773 (+ 0) | 620.04M (+ 0B) | 19,571 (+ 0) |
2022-09-27 (+ 271 d) | 23.94M (+ 0B) | 27 (+ 0) | 140 (+ 0) | 36,773 (+ 0) | 620.04M (+ 0B) | 19,571 (+ 0) |
2021-12-30 (+ 115 d) | 23.94M (+ 0B) | 27 (+ 0) | 140 (+ 0) | 36,773 (+ 0) | 620.04M (+ 0B) | 19,571 (+ 0) |
2021-09-05 (+ 150 d) | 23.94M (+ 0B) | 27 (+ 0) | 140 (+ 0) | 36,773 (+ 0) | 620.04M (+ 0B) | 19,571 (+ 0) |
2021-04-08 (+ 68 d) | 23.94M (+ 0B) | 27 (+ 0) | 140 (+ 0) | 36,773 (+ 0) | 620.04M (+ 0B) | 19,571 (+ 0) |
2021-01-29 (+ 120 d) | 23.94M (+ 0B) | 27 (+ 0) | 140 (+ 0) | 36,773 (+ 0) | 620.04M (+ 0B) | 19,571 (+ 0) |
2020-10-01 (+ 38 d) | 23.94M (+ 0B) | 27 (+ 0) | 140 (+ 0) | 36,773 (+ 0) | 620.04M (+ 0B) | 19,571 (+ 0) |
2020-08-23 (+ 141 d) | 23.94M (+ 0B) | 27 (+ 0) | 140 (+ 0) | 36,773 (+ 0) | 620.04M (+ 0B) | 19,571 (+ 0) |
2020-04-04 (+ 196 d) | 23.94M (+ 0B) | 27 (+ 0) | 140 (+ 0) | 36,773 (+ 0) | 620.04M (+ 0B) | 19,571 (+ 0) |
2019-09-21 (+ 197 d) | 23.94M (+ 0B) | 27 (+ 0) | 140 (+ 0) | 36,773 (+ 0) | 620.04M (+ 0B) | 19,571 (+ 0) |
2019-03-07 (+ 43 d) | 23.94M (+ 0B) | 27 (+ 0) | 140 (+ 0) | 36,773 (+ 0) | 620.04M (+ 0B) | 19,571 (+ 0) |
2019-01-23 (+ 44 d) | 23.94M (+ 0B) | 27 (+ 0) | 140 (+ 0) | 36,773 (+ 0) | 620.04M (+ 0B) | 19,571 (+ 0) |
2018-12-09 (+ 29 d) | 23.94M (+ 0B) | 27 (+ 0) | 140 (+ 0) | 36,773 (+ 0) | 620.04M (+ 0B) | 19,571 (+ 0) |
2018-11-09 (+ 27 d) | 23.94M (+ 4.95M) | 27 (+ 0) | 140 (+ 0) | 36,773 (+ 0) | 620.04M (+ 0B) | 19,571 (+ 0) |
2018-10-13 (+ 29 d) | 18.98M (+ 0B) | 27 (+ 0) | 140 (+ 0) | 36,773 (+ 0) | 620.04M (+ 0B) | 19,571 (+ 0) |
2018-09-13 (+ 34 d) | 18.98M (+ 0B) | 27 (+ 0) | 140 (+ 0) | 36,773 (+ 0) | 620.04M (+ 0B) | 19,571 (+ 0) |
2018-08-09 (+ 27 d) | 18.98M (+ 0B) | 27 (+ 0) | 140 (+ 0) | 36,773 (+ 0) | 620.04M (+ 0B) | 19,571 (+ 0) |
2018-07-12 (+ 31 d) | 18.98M (+ 0B) | 27 (+ 0) | 140 (+ 0) | 36,773 (+ 0) | 620.04M (+ 0B) | 19,571 (+ 0) |
2018-06-10 (+ 31 d) | 18.98M (+ 0B) | 27 (+ 0) | 140 (+ 0) | 36,773 (+ 0) | 620.04M (+ 0B) | 19,571 (+ 0) |
2018-05-10 (+ 28 d) | 18.98M (+ 0B) | 27 (+ 0) | 140 (+ 0) | 36,773 (+ 0) | 620.04M (+ 0B) | 19,571 (+ 0) |
2018-04-11 (+ 73 d) | 18.98M (+ 0B) | 27 (+ 0) | 140 (+ 0) | 36,773 (+ 0) | 620.04M (+ 0B) | 19,571 (+ 0) |
2018-01-27 (+ 29 d) | 18.98M (+ 80K) | 27 (+ 0) | 140 (+ 0) | 36,773 (- 214) | 620.04M (+ 0B) | 19,571 (+ 0) |
2017-12-29 (+ 20 d) | 18.91M (+ 0B) | 27 (+ 0) | 140 (+ 0) | 36,987 (+ 0) | 620.04M (+ 0B) | 19,571 (+ 0) |
2017-12-08 (+ 9 d) | 18.91M (+ 0B) | 27 (+ 0) | 140 (+ 0) | 36,987 (+ 0) | 620.04M (+ 0B) | 19,571 (+ 0) |
2017-11-28 (+ 19 d) | 18.91M (+ 16K) | 27 (+ 0) | 140 (+ 3) | 36,987 (+ 32) | 620.04M (+ 0B) | 19,571 (+ 0) |
2017-11-09 (+ 10 d) | 18.89M (+ 5.81M) | 27 (+ 0) | 137 (+ 1) | 36,955 (+ 0) | 620.04M (+ 376.16M) | 19,571 (+ 17,173) |
2017-10-29 | 13.08M | 27 | 136 | 36,955 | 243.88M | 2,398 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.