Name | n3_chennan_business_businessmart_com |
---|---|
Data | 21.28M (+ 0B) |
Tables | 3 (+ 0) |
Columns | 29 (+ 0) |
Table Rows | 38,550 (+ 0) |
Media | 0B (+ 0B) |
Files | 0 (+ 0) |
Last Commit | 2023-06-19 18:36:38 (+ 169 d) |
In the companies database, there are 18,576 records by 90 categories. Each company is comprised of title, gross, asking price, cash flow, furniture and fixture value, inventory value, established, number of employee, facilities, business summary, expansion, listing number, seller reference number and etc. The whole companies data set consists of 3 tables.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
category_1 | 90 | title |
100%
|
category_1_x_company | 19,884 | category_1_id |
100%
|
company_id |
100%
|
||
company | 18,576 | title |
100%
|
asking_price |
99.83%
|
||
gross |
99.83%
|
||
cash_flow |
99.83%
|
||
furniture_and_fixture_value |
39.07%
|
||
inventory_value |
31.54%
|
||
business_summary |
99.83%
|
||
established |
58.5%
|
||
number_of_employee |
55.54%
|
||
facilitie |
55.07%
|
||
expansion |
38.31%
|
||
owner_willing_to_train |
82.7%
|
||
reason_for_selling |
73.09%
|
||
seller_reference_number |
99.83%
|
||
listing_number |
99.83%
|
||
location |
99.83%
|
No media sets.
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 21.28M (+ 0B) | 3 (+ 0) | 29 (+ 0) | 38,550 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2023-01-01 (+ 95 d) | 21.28M (+ 0B) | 3 (+ 0) | 29 (+ 0) | 38,550 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2022-09-27 (+ 271 d) | 21.28M (+ 0B) | 3 (+ 0) | 29 (+ 0) | 38,550 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-12-30 (+ 115 d) | 21.28M (+ 0B) | 3 (+ 0) | 29 (+ 0) | 38,550 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-09-05 (+ 150 d) | 21.28M (+ 0B) | 3 (+ 0) | 29 (+ 0) | 38,550 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-04-08 (+ 68 d) | 21.28M (+ 0B) | 3 (+ 0) | 29 (+ 0) | 38,550 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-01-29 (+ 120 d) | 21.28M (+ 0B) | 3 (+ 0) | 29 (+ 0) | 38,550 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-10-01 (+ 38 d) | 21.28M (+ 0B) | 3 (+ 0) | 29 (+ 0) | 38,550 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-08-23 (+ 141 d) | 21.28M (+ 0B) | 3 (+ 0) | 29 (+ 0) | 38,550 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-04-04 (+ 196 d) | 21.28M (+ 0B) | 3 (+ 0) | 29 (+ 0) | 38,550 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-09-21 (+ 197 d) | 21.28M (+ 0B) | 3 (+ 0) | 29 (+ 0) | 38,550 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-03-07 (+ 43 d) | 21.28M (+ 0B) | 3 (+ 0) | 29 (+ 0) | 38,550 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-01-23 (+ 44 d) | 21.28M (+ 0B) | 3 (+ 0) | 29 (+ 0) | 38,550 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-12-09 (+ 29 d) | 21.28M (+ 0B) | 3 (+ 0) | 29 (+ 0) | 38,550 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-11-09 (+ 27 d) | 21.28M (+ 11.75M) | 3 (+ 0) | 29 (+ 0) | 38,550 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-10-13 (+ 29 d) | 9.53M (+ 0B) | 3 (+ 0) | 29 (+ 0) | 38,550 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-09-13 (+ 34 d) | 9.53M (+ 0B) | 3 (+ 0) | 29 (+ 0) | 38,550 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-08-09 (+ 27 d) | 9.53M (+ 0B) | 3 (+ 0) | 29 (+ 0) | 38,550 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-07-12 (+ 31 d) | 9.53M (+ 0B) | 3 (+ 0) | 29 (+ 0) | 38,550 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-06-10 (+ 31 d) | 9.53M (+ 0B) | 3 (+ 0) | 29 (+ 0) | 38,550 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-05-10 (+ 28 d) | 9.53M (+ 0B) | 3 (+ 0) | 29 (+ 0) | 38,550 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-04-11 (+ 38 d) | 9.53M (+ 0B) | 3 (+ 0) | 29 (+ 0) | 38,550 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-03-03 (+ 35 d) | 9.53M (+ 0B) | 3 (+ 0) | 29 (+ 0) | 38,550 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-01-27 | 9.53M | 3 | 29 | 38,550 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.