Name | n3_lyz_chenhr.com |
---|---|
Data | 33.20M (+ 0B) |
Tables | 10 (+ 0) |
Columns | 72 (+ 0) |
Table Rows | 59,997 (+ 0) |
Media | 0B (+ 0B) |
Files | 0 (+ 0) |
Last Commit | 2023-06-19 18:12:05 (+ 169 d) |
这是一个数据量大且结构丰富的化工招聘数据库,其中有来自中国368地区4化工行业的1,355企业提供的13,630岗位招聘信息。在岗位招聘信息表中有职位,工作地点,薪资,受教育程度,数量,岗位描述,类型,工作经验,专业,外语,时间等字段;公司表中包含公司名称,规模,企业类型和公司简介;在公司联系表中包含联系人姓名,公司地址,邮编,公司网址,电话,邮件地址等;岗位联系表中有联系人,地址,邮编等相关信息。在这个化工类企业招聘信息数据库中还包括368公司注册信息,其中有注册代码,状态,注册资产,期限等信息。
请注意:该数据库动态性较强,所以可以根据用户需求提供更新。
This is a fields-rich jobs database of chemical industry with 13,630 jobs records from 1,355 companies of 4 chemical industries over 368 popular regions in China. Each job record has position, working location, salary, education, quantity, description, type, experience, major, foreign language, title, time and salary from/to/unit/other.
The whole chemical industry jobs database has 10 tables. In table company, there are 1,355 records with company name, size, type and description in each. From the table company connection, it has 1,159 records with contact, address, zip code, website, company id, etc. in each record. The table job connection has 4,601 records with contact, address, zip code and job id in each. It also comes with 1,093 company register informations including code, status, registre property, term and company id in each.
This abundant jobs of chemical industry database is a great one to help someone get the complete enterprise recruitment information or offer the interviewee a chance to apply the wanted job.
Please NOTE: These data are more dynamic so it can be updated as your needs.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
category_industry_1 | 4 | title |
100%
|
category_industry_1_x_region | 368 | region_id |
100%
|
category_industry_1_id |
100%
|
||
company | 1,355 | company |
100%
|
size |
100%
|
||
type |
100%
|
||
description |
96.31%
|
||
company_connection | 1,159 | contacter |
61%
|
address |
95.77%
|
||
zip_code |
88.27%
|
||
website |
50.91%
|
||
company_id |
100%
|
||
telepone |
1.04%
|
||
1.38%
|
|||
company_register | 1,093 | code |
100%
|
status |
100%
|
||
registre_property |
100%
|
||
term |
100%
|
||
company_id |
100%
|
||
job | 13,630 | position |
100%
|
working_location |
100%
|
||
salary |
99.95%
|
||
education |
100%
|
||
quantity |
100%
|
||
description |
99.53%
|
||
type |
99.53%
|
||
experience |
99.53%
|
||
major |
99.52%
|
||
foreign_language |
99.53%
|
||
title |
99.53%
|
||
time |
99.53%
|
||
salary_from |
84.13%
|
||
salary_to |
81.93%
|
||
salary_unit |
84.13%
|
||
salary_other |
15.87%
|
||
job_connection | 4,601 | contacter |
62.6%
|
address |
91.24%
|
||
zip_code |
88.92%
|
||
job_id |
100%
|
||
job_x_company | 14,476 | job_id |
100%
|
company_id |
100%
|
||
region | 368 | region |
100%
|
region_x_job | 22,943 | region_id |
100%
|
job_id |
100%
|
No media sets.
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 33.20M (+ 0B) | 10 (+ 0) | 72 (+ 0) | 59,997 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2023-01-01 (+ 95 d) | 33.20M (+ 0B) | 10 (+ 0) | 72 (+ 0) | 59,997 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2022-09-27 (+ 271 d) | 33.20M (+ 0B) | 10 (+ 0) | 72 (+ 0) | 59,997 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-12-30 (+ 115 d) | 33.20M (+ 0B) | 10 (+ 0) | 72 (+ 0) | 59,997 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-09-05 (+ 150 d) | 33.20M (+ 0B) | 10 (+ 0) | 72 (+ 0) | 59,997 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-04-08 (+ 68 d) | 33.20M (+ 0B) | 10 (+ 0) | 72 (+ 0) | 59,997 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-01-29 (+ 120 d) | 33.20M (+ 0B) | 10 (+ 0) | 72 (+ 0) | 59,997 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-10-01 (+ 38 d) | 33.20M (+ 0B) | 10 (+ 0) | 72 (+ 0) | 59,997 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-08-23 (+ 141 d) | 33.20M (+ 0B) | 10 (+ 0) | 72 (+ 0) | 59,997 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-04-04 (+ 196 d) | 33.20M (+ 0B) | 10 (+ 0) | 72 (+ 0) | 59,997 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-09-21 (+ 197 d) | 33.20M (+ 0B) | 10 (+ 0) | 72 (+ 0) | 59,997 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-03-07 (+ 43 d) | 33.20M (+ 0B) | 10 (+ 0) | 72 (+ 0) | 59,997 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-01-23 (+ 44 d) | 33.20M (+ 0B) | 10 (+ 0) | 72 (+ 0) | 59,997 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-12-09 (+ 29 d) | 33.20M (+ 0B) | 10 (+ 0) | 72 (+ 0) | 59,997 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-11-09 (+ 27 d) | 33.20M (+ 4.30M) | 10 (+ 0) | 72 (+ 0) | 59,997 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-10-13 (+ 29 d) | 28.91M (+ 0B) | 10 (+ 0) | 72 (+ 0) | 59,997 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-09-13 (+ 34 d) | 28.91M (+ 0B) | 10 (+ 0) | 72 (+ 0) | 59,997 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-08-09 (+ 27 d) | 28.91M (+ 0B) | 10 (+ 0) | 72 (+ 0) | 59,997 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-07-12 (+ 31 d) | 28.91M (+ 0B) | 10 (+ 0) | 72 (+ 0) | 59,997 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-06-10 (+ 31 d) | 28.91M (+ 0B) | 10 (+ 0) | 72 (+ 0) | 59,997 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-05-10 (+ 28 d) | 28.91M (+ 0B) | 10 (+ 0) | 72 (+ 0) | 59,997 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-04-11 (+ 38 d) | 28.91M (+ 0B) | 10 (+ 0) | 72 (+ 0) | 59,997 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-03-03 (+ 35 d) | 28.91M (+ 16.31M) | 10 (+ 0) | 72 (+ 4) | 59,997 (+ 1,139) | 0B (+ 0B) | 0 (+ 0) |
2018-01-27 | 12.59M | 10 | 68 | 58,858 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.