Name | n3_lyz_buildhr.com |
---|---|
Data | 80.64M (+ 0B) |
Tables | 8 (+ 0) |
Columns | 53 (+ 0) |
Table Rows | 76,843 (+ 0) |
Media | 0B (+ 0B) |
Files | 0 (+ 0) |
Last Commit | 2023-06-19 18:12:05 (+ 169 d) |
这个建筑招聘数据库中共有8个表, 分别是行业分类表,行业分类与地区对应表,公司表,招聘岗位信息表,职位联系相关信息表,岗位与公司相关表,地区表和地区与职位相关表。其中,职位表中包括17,480职位信息,有职位,工作描述,工作地区,受教育程度,招聘数量,工作经验,类型,语言,工作时间及薪资记录;公司表中有17,510公司记录,每条公司记录中有公司名称,公司简介,公司规模及公司类型;职位联系相关信息表中有5,463职位联系信息记录,每条记录中有联系人姓名,电话,邮件,传真号,邮编,地址等。在这个建筑岗位数据库中,所有这些岗位信息来源于中国的12大建筑行业(建筑设计,工程施工,市政工程,轨道交通,装修装饰,机场港口,水利水电,地产物业,工业建筑,园林景观,环境工程和建筑机械),且分布在644受欢迎的地区。
请注意:该职位数据库动态性较强,所以可以根据用户需求提供更新。
This is a jobs database with 17,480 records from 17,510 architecture companies by 12 construction industries over 644 regions in China. Each job record consists of position, description, working location, education, quantity, experience, type, language, time and salary from/to/other.
These 12 construction industries are architectural design, engineering construction, municipal engineering, rail transit, fitment & decoration, port & airport, water conservancy and hydro-power, real estate & property, industrial architecture, landscape architecture, environmental engineering and construction machinery. In table company, there are company, size, type and description record in each. The table jobs related informations provide contacter, telephone number, email, zip code, address, etc. These phone numbers are unique.
The whole jobs of architecture companies database has 8 tables.
Please NOTE: These data are more dynamic so it can be updated as your needs.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
category_industry_1 | 12 | title |
100%
|
category_industry_1_x_region | 736 | region_id |
100%
|
category_industry_1_id |
100%
|
||
company | 17,510 | company |
100%
|
description |
99.74%
|
||
size |
99.74%
|
||
type |
99.74%
|
||
job | 17,480 | position |
100%
|
description |
98.71%
|
||
working_location |
98.71%
|
||
education |
98.71%
|
||
quantity |
98.71%
|
||
experience |
98.71%
|
||
type |
98.71%
|
||
language |
98.71%
|
||
time |
98.71%
|
||
salary_from |
79.83%
|
||
salary_to |
79.89%
|
||
salary_other |
8.63%
|
||
job_connection | 5,463 | contacter |
67.82%
|
telephone |
71.22%
|
||
11.39%
|
|||
fax |
13.12%
|
||
zip_code |
79.33%
|
||
address |
81.26%
|
||
job_id |
100%
|
||
job_x_company | 17,518 | job_id |
100%
|
company_id |
100%
|
||
region | 644 | region |
100%
|
region_x_job | 17,480 | region_id |
100%
|
job_id |
100%
|
No media sets.
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 80.64M (+ 0B) | 8 (+ 0) | 53 (+ 0) | 76,843 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2023-01-01 (+ 95 d) | 80.64M (+ 0B) | 8 (+ 0) | 53 (+ 0) | 76,843 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2022-09-27 (+ 271 d) | 80.64M (+ 0B) | 8 (+ 0) | 53 (+ 0) | 76,843 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-12-30 (+ 115 d) | 80.64M (+ 0B) | 8 (+ 0) | 53 (+ 0) | 76,843 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-09-05 (+ 150 d) | 80.64M (+ 0B) | 8 (+ 0) | 53 (+ 0) | 76,843 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-04-08 (+ 68 d) | 80.64M (+ 0B) | 8 (+ 0) | 53 (+ 0) | 76,843 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-01-29 (+ 120 d) | 80.64M (+ 0B) | 8 (+ 0) | 53 (+ 0) | 76,843 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-10-01 (+ 38 d) | 80.64M (+ 0B) | 8 (+ 0) | 53 (+ 0) | 76,843 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-08-23 (+ 141 d) | 80.64M (+ 0B) | 8 (+ 0) | 53 (+ 0) | 76,843 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-04-04 (+ 196 d) | 80.64M (+ 0B) | 8 (+ 0) | 53 (+ 0) | 76,843 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-09-21 (+ 197 d) | 80.64M (+ 0B) | 8 (+ 0) | 53 (+ 0) | 76,843 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-03-07 (+ 43 d) | 80.64M (+ 0B) | 8 (+ 0) | 53 (+ 0) | 76,843 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-01-23 (+ 44 d) | 80.64M (+ 0B) | 8 (+ 0) | 53 (+ 0) | 76,843 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-12-09 (+ 29 d) | 80.64M (+ 0B) | 8 (+ 0) | 53 (+ 0) | 76,843 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-11-09 (+ 27 d) | 80.64M (+ 42.16M) | 8 (+ 0) | 53 (+ 0) | 76,843 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-10-13 (+ 29 d) | 38.48M (+ 0B) | 8 (+ 0) | 53 (+ 0) | 76,843 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-09-13 (+ 34 d) | 38.48M (+ 0B) | 8 (+ 0) | 53 (+ 0) | 76,843 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-08-09 (+ 27 d) | 38.48M (+ 0B) | 8 (+ 0) | 53 (+ 0) | 76,843 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-07-12 (+ 31 d) | 38.48M (+ 0B) | 8 (+ 0) | 53 (+ 0) | 76,843 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-06-10 (+ 31 d) | 38.48M (+ 0B) | 8 (+ 0) | 53 (+ 0) | 76,843 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-05-10 (+ 28 d) | 38.48M (+ 0B) | 8 (+ 0) | 53 (+ 0) | 76,843 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-04-11 (+ 38 d) | 38.48M (+ 0B) | 8 (+ 0) | 53 (+ 0) | 76,843 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-03-03 (+ 35 d) | 38.48M (+ 22.20M) | 8 (+ 0) | 53 (+ 2) | 76,843 (+ 5,462) | 0B (+ 0B) | 0 (+ 0) |
2018-01-27 | 16.28M | 8 | 51 | 71,381 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.