Name | n3_lyz_bankhr.com |
---|---|
Data | 3.38M (+ 0B) |
Tables | 10 (+ 0) |
Columns | 71 (+ 0) |
Table Rows | 8,831 (+ 0) |
Media | 0B (+ 0B) |
Files | 0 (+ 0) |
Last Commit | 2023-06-19 18:12:05 (+ 169 d) |
这个金融企业招聘数据库共有10个表,其中工作招聘表中包含有1,026就业岗位,所有岗位来自中国368地区5大行业108个金融企业,且每个公司的类型,规模及简介均有提供。岗位招聘记录中包含职位,工作地区,学历,数量,工作内容描述,薪资,岗位类型,工作经验,专业,外语等。这5大行业是银行/国家/企业;基金/证券/期货;投资/信托/租赁;保险;金融服务。在公司联结表中有公司的联系人,地址,邮编,网址,邮件,电话。在相关职业表中岗位的联系人,地址和邮编都有提供。
请注意:该数据库动态性较强,所以可以根据用户需求提供更新。
From 108 companies by 5 industries (Bank/Country/Enterprise; Fund/Stock/Futures Good; Investment/Trust/Lease; Insurance; Financial Services), this jobs database has 1,026 records from 368 regions in China. Each job record is comprised of position, working location, education, quantity, description, salary from/to/unit/other, type, experience, time, major, foreign language, etc. It provides 91 companies informations (contacter, address, zip code, telephone number, etc. of each company) and 242 jobs informations (contacter, address and zip code of each job) so that the recruit working is easy to complete. The whole jobs database has 10 tables.
Please NOTE: These data are more dynamic so it can be updated as your needs.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
category_industry_1 | 5 | title |
100%
|
category_industry_1_x_region | 368 | region_id |
100%
|
category_industry_1_id |
100%
|
||
company | 108 | company |
100%
|
size |
100%
|
||
type |
100%
|
||
description |
74.07%
|
||
company_connection | 91 | contacter |
51.65%
|
address |
93.41%
|
||
zip_code |
71.43%
|
||
company_id |
100%
|
||
website |
41.76%
|
||
telepone |
7.69%
|
||
17.58%
|
|||
company_register | 67 | code |
100%
|
status |
100%
|
||
registre_property |
100%
|
||
term |
100%
|
||
company_id |
100%
|
||
job | 1,026 | position |
100%
|
working_location |
100%
|
||
education |
100%
|
||
quantity |
100%
|
||
description |
77.68%
|
||
salary_from |
74.66%
|
||
salary_to |
74.66%
|
||
salary_unit |
74.66%
|
||
salary_other |
19.88%
|
||
type |
77.68%
|
||
experience |
77.68%
|
||
major |
77.68%
|
||
foreign_language |
77.68%
|
||
title |
77.68%
|
||
time |
77.68%
|
||
job_connection | 242 | contacter |
64.46%
|
address |
95.45%
|
||
zip_code |
91.32%
|
||
job_id |
100%
|
||
job_x_company | 1,032 | job_id |
100%
|
company_id |
100%
|
||
region | 368 | region |
100%
|
region_x_job | 5,524 | region_id |
100%
|
job_id |
100%
|
No media sets.
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 3.38M (+ 0B) | 10 (+ 0) | 71 (+ 0) | 8,831 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2023-01-01 (+ 95 d) | 3.38M (+ 0B) | 10 (+ 0) | 71 (+ 0) | 8,831 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2022-09-27 (+ 271 d) | 3.38M (+ 0B) | 10 (+ 0) | 71 (+ 0) | 8,831 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-12-30 (+ 115 d) | 3.38M (+ 0B) | 10 (+ 0) | 71 (+ 0) | 8,831 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-09-05 (+ 150 d) | 3.38M (+ 0B) | 10 (+ 0) | 71 (+ 0) | 8,831 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-04-08 (+ 68 d) | 3.38M (+ 0B) | 10 (+ 0) | 71 (+ 0) | 8,831 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-01-29 (+ 120 d) | 3.38M (+ 0B) | 10 (+ 0) | 71 (+ 0) | 8,831 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-10-01 (+ 38 d) | 3.38M (+ 0B) | 10 (+ 0) | 71 (+ 0) | 8,831 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-08-23 (+ 141 d) | 3.38M (+ 0B) | 10 (+ 0) | 71 (+ 0) | 8,831 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-04-04 (+ 196 d) | 3.38M (+ 0B) | 10 (+ 0) | 71 (+ 0) | 8,831 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-09-21 (+ 197 d) | 3.38M (+ 0B) | 10 (+ 0) | 71 (+ 0) | 8,831 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-03-07 (+ 43 d) | 3.38M (+ 0B) | 10 (+ 0) | 71 (+ 0) | 8,831 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-01-23 (+ 44 d) | 3.38M (+ 0B) | 10 (+ 0) | 71 (+ 0) | 8,831 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-12-09 (+ 29 d) | 3.38M (+ 0B) | 10 (+ 0) | 71 (+ 0) | 8,831 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-11-09 (+ 27 d) | 3.38M (+ 1.59M) | 10 (+ 0) | 71 (+ 0) | 8,831 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-10-13 (+ 29 d) | 1.78M (+ 0B) | 10 (+ 0) | 71 (+ 0) | 8,831 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-09-13 (+ 34 d) | 1.78M (+ 0B) | 10 (+ 0) | 71 (+ 0) | 8,831 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-08-09 (+ 27 d) | 1.78M (+ 0B) | 10 (+ 0) | 71 (+ 0) | 8,831 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-07-12 (+ 31 d) | 1.78M (+ 0B) | 10 (+ 0) | 71 (+ 0) | 8,831 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-06-10 (+ 31 d) | 1.78M (+ 0B) | 10 (+ 0) | 71 (+ 0) | 8,831 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-05-10 (+ 28 d) | 1.78M (+ 0B) | 10 (+ 0) | 71 (+ 0) | 8,831 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-04-11 (+ 38 d) | 1.78M (+ 0B) | 10 (+ 0) | 71 (+ 0) | 8,831 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-03-03 (+ 35 d) | 1.78M (+ 864K) | 10 (+ 0) | 71 (+ 3) | 8,831 (+ 4,799) | 0B (+ 0B) | 0 (+ 0) |
2018-01-27 | 960K | 10 | 68 | 4,032 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.