Name | n3_lyz_healthr.com |
---|---|
Data | 16.81M (+ 0B) |
Tables | 10 (+ 0) |
Columns | 70 (+ 0) |
Table Rows | 31,330 (+ 0) |
Media | 0B (+ 0B) |
Files | 0 (+ 0) |
Last Commit | 2023-06-19 18:12:05 (+ 169 d) |
这是一个来自中国92个地区的医药行业招聘数据库。该数据库中有7,302个招聘信息记录,每条记录中包含有职位,工作地点,文凭,数量,岗位描述,薪资,类型,工作经验,专业,外语等。所有这些招聘岗位是由5大医药行业的297个企业提供,其中,这五大医药行业是公立/民营医疗卫生,生物/化学制药,医疗器械,药品流通和保健品;每个医药企业有公司名称,规模,类型及简介。除此之外,该医药招聘数据库中还有227个数据记录的公司信息表;198个公司注册记录表及2,621个记录的招聘联系方式表。在公司信息表中有联系人,公司地址,邮编和网站等字段;在公司注册表中,每条记录都有注册代码,注册状态,注册资产,条款等字段;在岗位联系表中有岗位联系人,地址,邮编等字段。该医药招聘数据库中共包含10个表。
请注意:该数据库动态性较强,所以可以根据用户需求提供更新。
This China jobs database of pharmaceuticals industry is filled with 7,302 records from 5 pharmaceuticals industries (public & private health service; chemical & biological pharmacy, medical apparatus & instruments; medicine circulation and health care product) over 92 regions. Each job record is comprised of position, working location, education, quantity, description, salary from/to/unit/other, type, experience, major, foreign language, title and time.
All these jobs are from 297 medical companies. In each company, there are company name, size, type and description. From the table company connection, there are 227 records with contact, address, zip code, company id and website in each. In table job connection, it has 2,621 records with contact, address, zip code and job id in each. It also comes with 198 company registers with code, status, register property, term and company id.
The whole pharmaceuticals industry recruitment database has 10 tables.
Please NOTE: These data are more dynamic so it can be updated as your needs.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
category_industry_1 | 5 | title |
100%
|
category_industry_1_x_region | 92 | region_id |
100%
|
category_industry_1_id |
100%
|
||
company | 297 | company |
100%
|
size |
100%
|
||
type |
100%
|
||
description |
91.92%
|
||
company_connection | 227 | contacter |
75.77%
|
address |
91.19%
|
||
zip_code |
70.04%
|
||
company_id |
100%
|
||
website |
47.58%
|
||
company_register | 198 | code |
100%
|
status |
100%
|
||
registre_property |
100%
|
||
term |
100%
|
||
company_id |
100%
|
||
job | 7,302 | position |
100%
|
working_location |
100%
|
||
education |
100%
|
||
quantity |
100%
|
||
description |
99.52%
|
||
salary_from |
71.53%
|
||
salary_to |
71.53%
|
||
salary_unit |
71.53%
|
||
salary_other |
27.06%
|
||
type |
99.52%
|
||
experience |
99.52%
|
||
major |
99.52%
|
||
foreign_language |
99.52%
|
||
title |
99.52%
|
||
time |
99.52%
|
||
job_connection | 2,621 | contacter |
83.02%
|
address |
90.81%
|
||
zip_code |
89.77%
|
||
job_id |
100%
|
||
job_x_company | 7,405 | job_id |
100%
|
company_id |
100%
|
||
region | 92 | region |
100%
|
region_x_job | 13,091 | region_id |
100%
|
job_id |
100%
|
No media sets.
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 16.81M (+ 0B) | 10 (+ 0) | 70 (+ 0) | 31,330 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2023-01-01 (+ 95 d) | 16.81M (+ 0B) | 10 (+ 0) | 70 (+ 0) | 31,330 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2022-09-27 (+ 271 d) | 16.81M (+ 0B) | 10 (+ 0) | 70 (+ 0) | 31,330 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-12-30 (+ 115 d) | 16.81M (+ 0B) | 10 (+ 0) | 70 (+ 0) | 31,330 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-09-05 (+ 150 d) | 16.81M (+ 0B) | 10 (+ 0) | 70 (+ 0) | 31,330 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-04-08 (+ 68 d) | 16.81M (+ 0B) | 10 (+ 0) | 70 (+ 0) | 31,330 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-01-29 (+ 120 d) | 16.81M (+ 0B) | 10 (+ 0) | 70 (+ 0) | 31,330 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-10-01 (+ 38 d) | 16.81M (+ 0B) | 10 (+ 0) | 70 (+ 0) | 31,330 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-08-23 (+ 141 d) | 16.81M (+ 0B) | 10 (+ 0) | 70 (+ 0) | 31,330 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-04-04 (+ 196 d) | 16.81M (+ 0B) | 10 (+ 0) | 70 (+ 0) | 31,330 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-09-21 (+ 197 d) | 16.81M (+ 0B) | 10 (+ 0) | 70 (+ 0) | 31,330 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-03-07 (+ 43 d) | 16.81M (+ 0B) | 10 (+ 0) | 70 (+ 0) | 31,330 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-01-23 (+ 44 d) | 16.81M (+ 0B) | 10 (+ 0) | 70 (+ 0) | 31,330 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-12-09 (+ 29 d) | 16.81M (+ 0B) | 10 (+ 0) | 70 (+ 0) | 31,330 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-11-09 (+ 27 d) | 16.81M (+ 8.47M) | 10 (+ 0) | 70 (+ 0) | 31,330 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-10-13 (+ 29 d) | 8.34M (+ 0B) | 10 (+ 0) | 70 (+ 0) | 31,330 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-09-13 (+ 34 d) | 8.34M (+ 0B) | 10 (+ 0) | 70 (+ 0) | 31,330 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-08-09 (+ 27 d) | 8.34M (+ 0B) | 10 (+ 0) | 70 (+ 0) | 31,330 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-07-12 (+ 31 d) | 8.34M (+ 0B) | 10 (+ 0) | 70 (+ 0) | 31,330 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-06-10 (+ 31 d) | 8.34M (+ 0B) | 10 (+ 0) | 70 (+ 0) | 31,330 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-05-10 (+ 28 d) | 8.34M (+ 0B) | 10 (+ 0) | 70 (+ 0) | 31,330 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-04-11 (+ 38 d) | 8.34M (+ 0B) | 10 (+ 0) | 70 (+ 0) | 31,330 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-03-03 (+ 35 d) | 8.34M (+ 7.89M) | 10 (+ 0) | 70 (- 1) | 31,330 (+ 30,704) | 0B (+ 0B) | 0 (+ 0) |
2018-01-27 | 464K | 10 | 71 | 626 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.