Name | n3_lyz_michr.com |
---|---|
Data | 3.33M (+ 0B) |
Tables | 12 (+ 0) |
Columns | 78 (+ 0) |
Table Rows | 6,872 (+ 0) |
Media | 0B (+ 0B) |
Files | 0 (+ 0) |
Last Commit | 2023-06-19 18:12:05 (+ 169 d) |
该制造业公司招聘信息数据库中包含有12个表。招聘岗位表中有来自制造行业的140家企业提供的1,038个工作岗位。每一个招聘工作岗位都有职位,文化程度,数量,岗位描述,薪资,类型,工作经验,专业,外语,岗位名称和工作时间,且每一个提供招聘岗位的企业都有企业相关的名称,规模,类型和企业简介。该招聘信息数据库的所有招聘岗位按照职位有一个12条记录的一级分类和154条记录的二级分类。在此数据库中还包含79个公司的联系方式和421个岗位招聘的联系信息。在这两个联系方式或者信息表中有联系人,地址,邮编等字段。所有的这些招聘信息和企业来自中国129个地区,如北京,上海,广州,深圳,天津,西安等地。
请注意:该数据库动态性较强,所以可以根据用户需求提供更新。
This is a well-structured manufacturing industry recruitment database that comes with 1,038 jobs from 140 enterprises over 129 in China. In the table of job, each record consists of position, education, quantity, description, salary, type, experience, major, foreign language, title, time, etc. In the table company, there are company, size, type and description fields. Besides, this jobs database provides 79 records of companies contact and 421 records of jobs contact, both of them have contact, zip code and address fields. All these manufacturing jobs are sorted by 12 primary classification and 154 sub-categories by position.
The whole manufacturing recruitment database has 12 tables.
Please NOTE: These data are more dynamic so it can be updated as your needs.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
category_position_1 | 12 | position |
100%
|
category_position_2 | 154 | position |
100%
|
category_position_1_id |
100%
|
||
category_position_2_x_job | 2,720 | category_position_2_id |
100%
|
job_id |
100%
|
||
category_position_3 | 0 | position |
0%
|
category_position_2_id |
0%
|
||
company | 140 | company |
100%
|
size |
100%
|
||
type |
100%
|
||
description |
97.86%
|
||
company_connection | 79 | contacter |
45.57%
|
address |
93.67%
|
||
zip_code |
67.09%
|
||
company_id |
100%
|
||
website |
43.04%
|
||
company_register | 59 | code |
100%
|
status |
100%
|
||
registre_property |
100%
|
||
term |
100%
|
||
company_id |
100%
|
||
job | 1,038 | position |
100%
|
education |
100%
|
||
quantity |
100%
|
||
description |
99.9%
|
||
salary_from |
89.98%
|
||
salary_to |
89.98%
|
||
salary_unit |
89.98%
|
||
salary_other |
9.63%
|
||
type |
99.9%
|
||
experience |
99.9%
|
||
major |
99.9%
|
||
foreign_language |
99.9%
|
||
title |
99.9%
|
||
time |
99.9%
|
||
job_connection | 421 | contacter |
60.57%
|
address |
89.31%
|
||
zip_code |
64.37%
|
||
job_id |
100%
|
||
job_x_company | 1,042 | job_id |
100%
|
company_id |
100%
|
||
job_x_region | 1,078 | job_id |
100%
|
region_id |
100%
|
||
region | 129 | region |
100%
|
No media sets.
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 3.33M (+ 0B) | 12 (+ 0) | 78 (+ 0) | 6,872 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2023-01-01 (+ 95 d) | 3.33M (+ 0B) | 12 (+ 0) | 78 (+ 0) | 6,872 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2022-09-27 (+ 271 d) | 3.33M (+ 0B) | 12 (+ 0) | 78 (+ 0) | 6,872 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-12-30 (+ 115 d) | 3.33M (+ 0B) | 12 (+ 0) | 78 (+ 0) | 6,872 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-09-05 (+ 150 d) | 3.33M (+ 0B) | 12 (+ 0) | 78 (+ 0) | 6,872 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-04-08 (+ 68 d) | 3.33M (+ 0B) | 12 (+ 0) | 78 (+ 0) | 6,872 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-01-29 (+ 120 d) | 3.33M (+ 0B) | 12 (+ 0) | 78 (+ 0) | 6,872 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-10-01 (+ 38 d) | 3.33M (+ 0B) | 12 (+ 0) | 78 (+ 0) | 6,872 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-08-23 (+ 141 d) | 3.33M (+ 0B) | 12 (+ 0) | 78 (+ 0) | 6,872 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-04-04 (+ 196 d) | 3.33M (+ 0B) | 12 (+ 0) | 78 (+ 0) | 6,872 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-09-21 (+ 197 d) | 3.33M (+ 0B) | 12 (+ 0) | 78 (+ 0) | 6,872 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-03-07 (+ 43 d) | 3.33M (+ 0B) | 12 (+ 0) | 78 (+ 0) | 6,872 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-01-23 (+ 44 d) | 3.33M (+ 0B) | 12 (+ 0) | 78 (+ 0) | 6,872 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-12-09 (+ 29 d) | 3.33M (+ 0B) | 12 (+ 0) | 78 (+ 0) | 6,872 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-11-09 (+ 27 d) | 3.33M (+ 224K) | 12 (+ 0) | 78 (+ 0) | 6,872 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-10-13 (+ 29 d) | 3.11M (+ 0B) | 12 (+ 0) | 78 (+ 0) | 6,872 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-09-13 (+ 34 d) | 3.11M (+ 0B) | 12 (+ 0) | 78 (+ 0) | 6,872 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-08-09 (+ 27 d) | 3.11M (+ 0B) | 12 (+ 0) | 78 (+ 0) | 6,872 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-07-12 (+ 31 d) | 3.11M (+ 0B) | 12 (+ 0) | 78 (+ 0) | 6,872 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-06-10 (+ 31 d) | 3.11M (+ 0B) | 12 (+ 0) | 78 (+ 0) | 6,872 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-05-10 (+ 28 d) | 3.11M (+ 0B) | 12 (+ 0) | 78 (+ 0) | 6,872 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-04-11 (+ 38 d) | 3.11M (+ 0B) | 12 (+ 0) | 78 (+ 0) | 6,872 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-03-03 (+ 35 d) | 3.11M (+ 2.22M) | 12 (+ 1) | 78 (+ 17) | 6,872 (+ 2,955) | 0B (+ 0B) | 0 (+ 0) |
2018-01-27 | 912K | 11 | 61 | 3,917 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.