Name | n3_lyz_56.800hr.com |
---|---|
Data | 14.02M (+ 0B) |
Tables | 11 (+ 0) |
Columns | 70 (+ 0) |
Table Rows | 25,339 (+ 0) |
Media | 0B (+ 0B) |
Files | 0 (+ 0) |
Last Commit | 2023-06-19 18:12:05 (+ 169 d) |
这是一个运输物流企业招聘信息数据库,该数据库中2,917多个招聘岗位是由来自中国369个地区的28多家企业提供。招聘信息数据库中所有招聘岗位按照职位分为11个大类(物流 / 仓储;交通运输服务;贸易 / 采购;销售类;经营管理;行政管理;人力资源;市场 / 策划 / 推广;客服 / 技术支持;财务 / 审计 / 统计)和121多个子分类,例如:经理,销售总监,项目经理,财务总监,销售工程师,市场总监等。每个工作岗位中有职位,文化程度,工作经验,招聘数量,薪资,岗位描述,岗位类型,专业等字段。此运输物流招聘信息数据库中共有11个表,且表结构良好,字段多,表关系清晰!
请注意:该数据库动态性较强,所以可以根据用户需求提供更新。
This is a recruitment information database of transport & logistics industry with 2,917 jobs records providing by 28 companies from 369 regions of China. All jobs are categorized into logistics / warehousing; transportation services; trade / purchase; marketing / planning / promotion; sales; management; customer service / technical support; human resources; operating management; administration and finance / audit / statistics positions and further classified 121 sub-categories (such as manager, supervisor, marketing director, project manager, sales director, finance director, sales engineer, etc.). Each job record is comprised of education, position, quantity, time, title, major, experience, type, salary, etc. The whole logistics industry employ information database has 11 tables.
Please NOTE: These data are more dynamic so it can be updated as your needs.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
category_position_1 | 11 | position |
100%
|
category_position_2 | 121 | position |
100%
|
category_position_1_id |
100%
|
||
category_position_2_x_job | 11,976 | category_position_2_id |
100%
|
job_id |
100%
|
||
company | 28 | company |
100%
|
size |
100%
|
||
type |
100%
|
||
description |
100%
|
||
company_connection | 26 | contacter |
96.15%
|
address |
92.31%
|
||
zip_code |
84.62%
|
||
company_id |
100%
|
||
website |
46.15%
|
||
company_register | 18 | code |
100%
|
status |
100%
|
||
registre_property |
100%
|
||
term |
100%
|
||
company_id |
100%
|
||
job | 2,917 | position |
100%
|
education |
100%
|
||
quantity |
100%
|
||
description |
92.8%
|
||
salary_from |
99.69%
|
||
salary_to |
99.69%
|
||
salary_unit |
99.69%
|
||
salary_other |
0.27%
|
||
type |
92.8%
|
||
experience |
92.8%
|
||
major |
92.8%
|
||
foreign_language |
92.8%
|
||
title |
92.8%
|
||
time |
92.8%
|
||
job_connection | 2,306 | contacter |
99.48%
|
address |
29.62%
|
||
zip_code |
29.62%
|
||
job_id |
100%
|
||
job_x_company | 2,917 | job_id |
100%
|
company_id |
100%
|
||
job_x_region | 4,650 | job_id |
100%
|
region_id |
100%
|
||
region | 369 | region |
100%
|
No media sets.
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 14.02M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 25,339 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2023-01-01 (+ 95 d) | 14.02M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 25,339 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2022-09-27 (+ 271 d) | 14.02M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 25,339 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-12-30 (+ 115 d) | 14.02M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 25,339 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-09-05 (+ 150 d) | 14.02M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 25,339 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-04-08 (+ 68 d) | 14.02M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 25,339 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-01-29 (+ 120 d) | 14.02M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 25,339 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-10-01 (+ 38 d) | 14.02M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 25,339 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-08-23 (+ 141 d) | 14.02M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 25,339 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-04-04 (+ 196 d) | 14.02M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 25,339 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-09-21 (+ 197 d) | 14.02M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 25,339 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-03-07 (+ 43 d) | 14.02M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 25,339 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-01-23 (+ 44 d) | 14.02M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 25,339 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-12-09 (+ 29 d) | 14.02M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 25,339 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-11-09 (+ 27 d) | 14.02M (+ 9.39M) | 11 (+ 0) | 70 (+ 0) | 25,339 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-10-13 (+ 29 d) | 4.62M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 25,339 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-09-13 (+ 34 d) | 4.62M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 25,339 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-08-09 (+ 27 d) | 4.62M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 25,339 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-07-12 (+ 31 d) | 4.62M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 25,339 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-06-10 (+ 31 d) | 4.62M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 25,339 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-05-10 (+ 28 d) | 4.62M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 25,339 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-04-11 (+ 38 d) | 4.62M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 25,339 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-03-03 | 4.62M | 11 | 70 | 25,339 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.