Name | n3_lyz_clothr.com |
---|---|
Data | 1.44M (+ 0B) |
Tables | 11 (+ 0) |
Columns | 73 (+ 0) |
Table Rows | 3,061 (+ 0) |
Media | 0B (+ 0B) |
Files | 0 (+ 0) |
Last Commit | 2023-06-19 18:12:05 (+ 169 d) |
该服装行业招聘信息数据库中共有11表和414多个岗位信息。所有的岗位信息是由服装行业43家企业提供的,这些企业都是来自中国21个地区的热门城市。其岗位表中有职位,岗位职责描述,招聘数量,文化程度,岗位类型,工作经验,薪资,工作时间,外语,专业等内容。该数据库中所有的岗位被分为服装设计类、服装生产 / 管理类、服装销售 / 市场类和行政管理类。
With 414 jobs data offered by 43 companies in garment industry from 21 regions of China, this clothing industry jobs database is well-structured and fields-rich. There are position, description, quantity, education, type, experience, salary, major, foreign language, etc. fields in each job record. All jobs are categorized into costume design; garment production / management; clothing sales / marketing and public administration. The whole China garment industry jobs data set has 11 tables.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
category_position_1 | 4 | position |
100%
|
category_position_2 | 127 | position |
100%
|
category_position_1_id |
100%
|
||
category_position_2_x_job | 1,372 | category_position_2_id |
100%
|
job_id |
100%
|
||
company | 43 | company |
100%
|
size |
100%
|
||
type |
100%
|
||
description |
97.67%
|
||
company_connection | 40 | contacter |
70%
|
address |
100%
|
||
zip_code |
75%
|
||
company_id |
100%
|
||
website |
45%
|
||
telepone |
7.5%
|
||
2.5%
|
|||
company_register | 37 | code |
100%
|
status |
100%
|
||
registre_property |
100%
|
||
term |
100%
|
||
company_id |
100%
|
||
job | 414 | position |
100%
|
education |
100%
|
||
quantity |
100%
|
||
description |
99.76%
|
||
salary_from |
66.91%
|
||
salary_to |
66.91%
|
||
salary_unit |
66.91%
|
||
salary_other |
31.64%
|
||
type |
99.76%
|
||
experience |
99.76%
|
||
major |
99.76%
|
||
foreign_language |
99.76%
|
||
title |
99.76%
|
||
time |
99.76%
|
||
job_connection | 173 | contacter |
65.32%
|
address |
94.22%
|
||
zip_code |
94.22%
|
||
job_id |
100%
|
||
job_x_company | 414 | job_id |
100%
|
company_id |
100%
|
||
job_x_region | 416 | job_id |
100%
|
region_id |
100%
|
||
region | 21 | region |
100%
|
No media sets.
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 1.44M (+ 0B) | 11 (+ 0) | 73 (+ 0) | 3,061 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2023-01-01 (+ 95 d) | 1.44M (+ 0B) | 11 (+ 0) | 73 (+ 0) | 3,061 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2022-09-27 (+ 271 d) | 1.44M (+ 0B) | 11 (+ 0) | 73 (+ 0) | 3,061 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-12-30 (+ 115 d) | 1.44M (+ 0B) | 11 (+ 0) | 73 (+ 0) | 3,061 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-09-05 (+ 150 d) | 1.44M (+ 0B) | 11 (+ 0) | 73 (+ 0) | 3,061 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-04-08 (+ 68 d) | 1.44M (+ 0B) | 11 (+ 0) | 73 (+ 0) | 3,061 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-01-29 (+ 120 d) | 1.44M (+ 0B) | 11 (+ 0) | 73 (+ 0) | 3,061 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-10-01 (+ 38 d) | 1.44M (+ 0B) | 11 (+ 0) | 73 (+ 0) | 3,061 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-08-23 (+ 141 d) | 1.44M (+ 0B) | 11 (+ 0) | 73 (+ 0) | 3,061 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-04-04 (+ 196 d) | 1.44M (+ 0B) | 11 (+ 0) | 73 (+ 0) | 3,061 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-09-21 (+ 197 d) | 1.44M (+ 0B) | 11 (+ 0) | 73 (+ 0) | 3,061 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-03-07 (+ 43 d) | 1.44M (+ 0B) | 11 (+ 0) | 73 (+ 0) | 3,061 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-01-23 (+ 44 d) | 1.44M (+ 0B) | 11 (+ 0) | 73 (+ 0) | 3,061 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-12-09 (+ 29 d) | 1.44M (+ 0B) | 11 (+ 0) | 73 (+ 0) | 3,061 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-11-09 (+ 27 d) | 1.44M (+ 592K) | 11 (+ 0) | 73 (+ 0) | 3,061 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-10-13 (+ 29 d) | 880K (+ 0B) | 11 (+ 0) | 73 (+ 0) | 3,061 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-09-13 (+ 34 d) | 880K (+ 0B) | 11 (+ 0) | 73 (+ 0) | 3,061 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-08-09 (+ 27 d) | 880K (+ 0B) | 11 (+ 0) | 73 (+ 0) | 3,061 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-07-12 (+ 31 d) | 880K (+ 0B) | 11 (+ 0) | 73 (+ 0) | 3,061 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-06-10 (+ 31 d) | 880K (+ 0B) | 11 (+ 0) | 73 (+ 0) | 3,061 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-05-10 (+ 28 d) | 880K (+ 0B) | 11 (+ 0) | 73 (+ 0) | 3,061 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-04-11 (+ 38 d) | 880K (+ 0B) | 11 (+ 0) | 73 (+ 0) | 3,061 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-03-03 | 880K | 11 | 73 | 3,061 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.