Name | n3_lyz_edu.800hr.com |
---|---|
Data | 3.12M (+ 0B) |
Tables | 11 (+ 0) |
Columns | 70 (+ 0) |
Table Rows | 7,155 (+ 0) |
Media | 0B (+ 0B) |
Files | 0 (+ 0) |
Last Commit | 2023-06-19 18:12:05 (+ 169 d) |
这是一个有关教育和培训的招聘信息数据库,该数据库中共有11个表和799个招聘岗位。所有的招聘岗位来自教育培训行业的86家企业,他们均位于中国的265个地区。每个招聘岗位信息包含有职位,文化程度,招聘数量,岗位描述,薪资待遇,岗位类型,工作经验,专业,外语,工作时间等重要字段。每个招聘企业均有提供企业名称,规模,类型和企业简介。该教育培训招聘信息数据库中的所有招聘岗位共有13个主分类,它们分别是幼儿类,小学类,中学类,职教与培训类,高校与科研院所类, 销售,设计/编辑/发行,市场,采购/仓储/物流,经营管理,人力资源/行政,财务/审计/统计以及其它分类。此教育培训招聘信息数据库有结构完整,数据量大以及字段丰富等特点。
请注意:该数据库动态性较强,所以可以根据用户需求提供更新。
Jobs database of education and training over 265 regions in China, there are a total of 799 jobs from 86 companies with position, education, quantity, description, salary from, salary to, salary unit, type, experience, major, foreign language, title, time, etc in each. In table company, it contains company, size, type & description. All these education and training jobs have 13 primary classification, these categories are early childhood education, primary school class, middle school education, vocational education and training, sales, market, etc.
The whole education and training recruitment API has 11 tables.
Please NOTE: These data are more dynamic so it can be updated as your needs.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
category_position_1 | 13 | position |
100%
|
category_position_2 | 192 | position |
100%
|
category_position_1_id |
100%
|
||
category_position_2_x_job | 3,369 | category_position_2_id |
100%
|
job_id |
100%
|
||
company | 86 | company |
100%
|
size |
100%
|
||
type |
100%
|
||
description |
98.84%
|
||
company_connection | 81 | contacter |
93.83%
|
address |
97.53%
|
||
zip_code |
93.83%
|
||
company_id |
100%
|
||
website |
50.62%
|
||
company_register | 33 | code |
100%
|
status |
100%
|
||
registre_property |
100%
|
||
term |
100%
|
||
company_id |
100%
|
||
job | 799 | position |
100%
|
education |
100%
|
||
quantity |
100%
|
||
description |
99.75%
|
||
salary_from |
95.87%
|
||
salary_to |
95.87%
|
||
salary_unit |
95.87%
|
||
salary_other |
4.01%
|
||
type |
99.75%
|
||
experience |
99.75%
|
||
major |
99.75%
|
||
foreign_language |
99.75%
|
||
title |
99.75%
|
||
time |
99.75%
|
||
job_connection | 548 | contacter |
85.04%
|
address |
52.74%
|
||
zip_code |
52.74%
|
||
job_id |
100%
|
||
job_x_company | 799 | job_id |
100%
|
company_id |
100%
|
||
job_x_region | 970 | job_id |
100%
|
region_id |
100%
|
||
region | 265 | region |
100%
|
No media sets.
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 3.12M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 7,155 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2023-01-01 (+ 95 d) | 3.12M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 7,155 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2022-09-27 (+ 271 d) | 3.12M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 7,155 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-12-30 (+ 115 d) | 3.12M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 7,155 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-09-05 (+ 150 d) | 3.12M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 7,155 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-04-08 (+ 68 d) | 3.12M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 7,155 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-01-29 (+ 120 d) | 3.12M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 7,155 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-10-01 (+ 38 d) | 3.12M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 7,155 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-08-23 (+ 141 d) | 3.12M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 7,155 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-04-04 (+ 196 d) | 3.12M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 7,155 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-09-21 (+ 197 d) | 3.12M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 7,155 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-03-07 (+ 43 d) | 3.12M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 7,155 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-01-23 (+ 44 d) | 3.12M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 7,155 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-12-09 (+ 29 d) | 3.12M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 7,155 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-11-09 (+ 27 d) | 3.12M (+ 1.59M) | 11 (+ 0) | 70 (+ 0) | 7,155 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-10-13 (+ 29 d) | 1.53M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 7,155 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-09-13 (+ 34 d) | 1.53M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 7,155 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-08-09 (+ 27 d) | 1.53M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 7,155 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-07-12 (+ 31 d) | 1.53M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 7,155 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-06-10 (+ 31 d) | 1.53M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 7,155 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-05-10 (+ 28 d) | 1.53M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 7,155 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-04-11 (+ 38 d) | 1.53M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 7,155 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-03-03 | 1.53M | 11 | 70 | 7,155 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.