Name | n3_lyz_ep.800hr.com |
---|---|
Data | 2.88M (+ 0B) |
Tables | 11 (+ 0) |
Columns | 70 (+ 0) |
Table Rows | 5,165 (+ 0) |
Media | 0B (+ 0B) |
Files | 0 (+ 0) |
Last Commit | 2023-06-19 18:12:05 (+ 169 d) |
这是一个中国电子行业89家企业提供了802个岗位的招聘信息数据库。每个招聘岗位包含有职位,文化程度,招聘数量,招聘描述,薪资,岗位类型,专业,外语,名称,工作时间等重要信息。在公司表中每个公司记录包含有公司名称,规模,类型和企业简介。该岗位招聘数据库中所有的工作大致有22个主分类,如火电,光电,水电,核电,风电,电力设计,销售等。整个电子行业招聘数据库共有11个表。
请注意:该数据库动态性较强,所以可以根据用户需求提供更新。
In the jobs database, there are 802 records from 89 companies in electricity industry of China. Each job is comprised of position, education, quantity, description, salary, type, major, foreign language, title, time, etc. In table company, there are company, size, type and description. All these jobs are categorized into 22 primary classifications, such as thermal power, photovoltaic, hydropower, nuclear power, etc. The whole China electricity industry jobs database has 11 tables.
Please NOTE: These data are more dynamic so it can be updated as your needs.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
category_position_1 | 22 | position |
100%
|
category_position_2 | 191 | position |
100%
|
category_position_1_id |
100%
|
||
category_position_2_x_job | 1,771 | category_position_2_id |
100%
|
job_id |
100%
|
||
company | 89 | company |
100%
|
size |
100%
|
||
type |
100%
|
||
description |
98.88%
|
||
company_connection | 84 | contacter |
94.05%
|
address |
98.81%
|
||
zip_code |
91.67%
|
||
company_id |
100%
|
||
website |
29.76%
|
||
company_register | 54 | code |
100%
|
status |
100%
|
||
registre_property |
100%
|
||
term |
100%
|
||
company_id |
100%
|
||
job | 802 | position |
100%
|
education |
100%
|
||
quantity |
100%
|
||
description |
73.32%
|
||
salary_from |
78.55%
|
||
salary_to |
78.55%
|
||
salary_unit |
78.55%
|
||
salary_other |
21.32%
|
||
type |
73.32%
|
||
experience |
73.32%
|
||
major |
73.32%
|
||
foreign_language |
73.32%
|
||
title |
73.32%
|
||
time |
73.32%
|
||
job_connection | 255 | contacter |
87.84%
|
address |
60.39%
|
||
zip_code |
60.39%
|
||
job_id |
100%
|
||
job_x_company | 804 | job_id |
100%
|
company_id |
100%
|
||
job_x_region | 921 | job_id |
100%
|
region_id |
100%
|
||
region | 172 | region |
100%
|
No media sets.
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 2.88M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 5,165 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2023-01-01 (+ 95 d) | 2.88M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 5,165 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2022-09-27 (+ 271 d) | 2.88M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 5,165 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-12-30 (+ 115 d) | 2.88M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 5,165 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-09-05 (+ 150 d) | 2.88M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 5,165 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-04-08 (+ 68 d) | 2.88M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 5,165 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-01-29 (+ 120 d) | 2.88M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 5,165 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-10-01 (+ 38 d) | 2.88M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 5,165 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-08-23 (+ 141 d) | 2.88M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 5,165 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-04-04 (+ 196 d) | 2.88M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 5,165 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-09-21 (+ 197 d) | 2.88M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 5,165 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-03-07 (+ 43 d) | 2.88M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 5,165 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-01-23 (+ 44 d) | 2.88M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 5,165 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-12-09 (+ 29 d) | 2.88M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 5,165 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-11-09 (+ 27 d) | 2.88M (+ 1.55M) | 11 (+ 0) | 70 (+ 0) | 5,165 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-10-13 (+ 29 d) | 1.33M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 5,165 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-09-13 (+ 34 d) | 1.33M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 5,165 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-08-09 (+ 27 d) | 1.33M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 5,165 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-07-12 (+ 31 d) | 1.33M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 5,165 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-06-10 (+ 31 d) | 1.33M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 5,165 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-05-10 (+ 28 d) | 1.33M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 5,165 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-04-11 (+ 38 d) | 1.33M (+ 0B) | 11 (+ 0) | 70 (+ 0) | 5,165 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-03-03 | 1.33M | 11 | 70 | 5,165 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.