Name | n3_lyz_hr.bjx.com.cn |
---|---|
Data | 52.11M (+ 0B) |
Tables | 9 (+ 0) |
Columns | 60 (+ 0) |
Table Rows | 143,915 (+ 0) |
Media | 0B (+ 0B) |
Files | 0 (+ 0) |
Last Commit | 2023-06-19 18:12:05 (+ 169 d) |
这是一个有关电力行业火电、风电、水电、光伏以及电气工程的招聘数据库,共有9个表且招聘信息记录19,838条。所有的招聘信息来源于1,037家电力行业的公司,这些公司分别在中国的35个地区。每个招聘信息中包含有职位,工作经验,薪资,工作地点,文化程度,年龄,性别,更新日期,招聘数量等重要信息。公司表中包含的重要字段有公司名称,企业简介,类型,规模,联系人等相关信息。该电力招聘数据库中的岗位共被分为8个主分类,如火电,水电,风电,光伏等类别。
请注意:该数据库动态性较强,所以可以根据用户需求提供更新。
With 19,838 records, this jobs database has complete structure and rich fields. These jobs are offered by 1,037 companies in thermal power, wind power, hydropower, photovoltaic and electrical engineering of electricity industry of from 35 regions in China. Each record consists of position, experience, salary, working location, education, age, gender, update time, quantity, etc. In table company, there are company, description, type, size, contact, etc. It has 8 primary categories, such as thermal power, hydro power, wind power, photovoltaic, etc.
The whole China electricity industry jobs data set has 9 tables.
Please NOTE: These data are more dynamic so it can be updated as your needs.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
category_industry_1 | 8 | industry |
100%
|
category_industry_1_x_region | 175 | category_industry_1_id |
100%
|
region_id |
100%
|
||
category_industry_1_x_region_x_job | 33,588 | category_industry_1_x_region_id |
100%
|
job_id |
100%
|
||
company | 1,037 | company |
100%
|
description |
85.25%
|
||
type |
100%
|
||
size |
90.55%
|
||
contactor |
92.38%
|
||
post_code |
60.08%
|
||
address |
79.17%
|
||
telephone |
1.45%
|
||
1.06%
|
|||
web_site |
2.7%
|
||
job | 19,838 | position |
100%
|
description |
60.1%
|
||
salary_from |
72.28%
|
||
salary_to |
72.28%
|
||
salary_unit |
72.49%
|
||
salary_other |
27.51%
|
||
experience |
100%
|
||
working_location |
100%
|
||
education |
100%
|
||
age |
100%
|
||
gender |
100%
|
||
quantity |
100%
|
||
update_time |
100%
|
||
foreign_language |
60.1%
|
||
60.06%
|
|||
job_x_company | 11,922 | job_id |
100%
|
company_id |
100%
|
||
job_x_welfare | 77,269 | job_id |
100%
|
welfare_id |
100%
|
||
region | 35 | region |
100%
|
welfare | 43 | welfare |
100%
|
No media sets.
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 52.11M (+ 0B) | 9 (+ 0) | 60 (+ 0) | 143,915 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2023-01-01 (+ 95 d) | 52.11M (+ 0B) | 9 (+ 0) | 60 (+ 0) | 143,915 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2022-09-27 (+ 271 d) | 52.11M (+ 0B) | 9 (+ 0) | 60 (+ 0) | 143,915 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-12-30 (+ 115 d) | 52.11M (+ 0B) | 9 (+ 0) | 60 (+ 0) | 143,915 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-09-05 (+ 150 d) | 52.11M (+ 0B) | 9 (+ 0) | 60 (+ 0) | 143,915 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-04-08 (+ 68 d) | 52.11M (+ 0B) | 9 (+ 0) | 60 (+ 0) | 143,915 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-01-29 (+ 120 d) | 52.11M (+ 0B) | 9 (+ 0) | 60 (+ 0) | 143,915 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-10-01 (+ 38 d) | 52.11M (+ 0B) | 9 (+ 0) | 60 (+ 0) | 143,915 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-08-23 (+ 141 d) | 52.11M (+ 0B) | 9 (+ 0) | 60 (+ 0) | 143,915 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-04-04 (+ 196 d) | 52.11M (+ 0B) | 9 (+ 0) | 60 (+ 0) | 143,915 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-09-21 (+ 197 d) | 52.11M (+ 0B) | 9 (+ 0) | 60 (+ 0) | 143,915 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-03-07 (+ 43 d) | 52.11M (+ 0B) | 9 (+ 0) | 60 (+ 0) | 143,915 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-01-23 (+ 44 d) | 52.11M (+ 0B) | 9 (+ 0) | 60 (+ 0) | 143,915 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-12-09 (+ 29 d) | 52.11M (+ 0B) | 9 (+ 0) | 60 (+ 0) | 143,915 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-11-09 (+ 27 d) | 52.11M (+ 23.58M) | 9 (+ 0) | 60 (+ 0) | 143,915 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-10-13 (+ 29 d) | 28.53M (+ 0B) | 9 (+ 0) | 60 (+ 0) | 143,915 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-09-13 (+ 34 d) | 28.53M (+ 0B) | 9 (+ 0) | 60 (+ 0) | 143,915 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-08-09 (+ 27 d) | 28.53M (+ 0B) | 9 (+ 0) | 60 (+ 0) | 143,915 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-07-12 (+ 31 d) | 28.53M (+ 0B) | 9 (+ 0) | 60 (+ 0) | 143,915 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-06-10 (+ 31 d) | 28.53M (+ 0B) | 9 (+ 0) | 60 (+ 0) | 143,915 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-05-10 (+ 28 d) | 28.53M (+ 0B) | 9 (+ 0) | 60 (+ 0) | 143,915 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-04-11 (+ 38 d) | 28.53M (+ 0B) | 9 (+ 0) | 60 (+ 0) | 143,915 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-03-03 | 28.53M | 9 | 60 | 143,915 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.