Name | n3_lyz_hr.bjx.com.cn_2 |
---|---|
Data | 26.78M (+ 0B) |
Tables | 12 (+ 0) |
Columns | 74 (+ 0) |
Table Rows | 91,479 (+ 0) |
Media | 0B (+ 0B) |
Files | 0 (+ 0) |
Last Commit | 2023-06-19 18:12:05 (+ 169 d) |
该招聘数据库中共有来自702多家企业的7,433个招聘信息,所有的企业来自中国351个地区的电力环保行业。每个岗位包含有职位,工作经验,薪资,工作地点,年龄,性别,文化程度等信息。在企业表中,每个记录包含有企业名称,规模,类型,联系人等重要字段。该电力环保行业招聘数据库中共的所有工作信息共有8大主分类类。整个数据库结构中共有12个表。
请注意:该数据库动态性较强,所以可以根据用户需求提供更新。
In this jobs data, there are 7,433 records offered by 702 companies of electricity environment protection industry from 351 regions of China. Each job is comprised of position, experience, salary, working location, age, education, gender, quantity, update time, etc. In table company, it has company, size, type, contact, etc. There are 8 primary categories of these jobs in the recruitment database.
The whole China jobs of electricity environment protection industry data set has 12 tables.
Please NOTE: These data are more dynamic so it can be updated as your needs.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
category_industry_1 | 8 | industry |
100%
|
category_position_1 | 15 | position |
100%
|
category_industry_1_id |
100%
|
||
category_position_2 | 233 | position |
100%
|
category_position_1_id |
100%
|
||
category_position_2_x_job | 13,875 | category_position_2_id |
100%
|
job_id |
100%
|
||
company | 702 | company |
100%
|
size |
76.64%
|
||
type |
100%
|
||
description |
77.07%
|
||
contactor |
86.32%
|
||
post_code |
48.72%
|
||
address |
71.94%
|
||
telephone |
0.28%
|
||
0.57%
|
|||
web_site |
2.71%
|
||
job | 7,433 | position |
100%
|
salary_from |
68.73%
|
||
salary_to |
68.73%
|
||
salary_unit |
68.84%
|
||
salary_other |
31.16%
|
||
experience |
100%
|
||
working_location |
100%
|
||
education |
100%
|
||
age |
100%
|
||
gender |
100%
|
||
quantity |
100%
|
||
update_time |
100%
|
||
job_detail | 7,414 | foreign_language |
100%
|
job_id |
100%
|
||
description |
99.11%
|
||
13.62%
|
|||
job_x_company | 7,414 | job_id |
100%
|
company_id |
100%
|
||
job_x_region | 7,440 | job_id |
100%
|
region_id |
100%
|
||
job_x_welfare | 46,552 | job_id |
100%
|
welfare_id |
100%
|
||
region | 351 | region |
100%
|
welfare | 42 | welfare |
100%
|
No media sets.
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 26.78M (+ 0B) | 12 (+ 0) | 74 (+ 0) | 91,479 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2023-01-01 (+ 95 d) | 26.78M (+ 0B) | 12 (+ 0) | 74 (+ 0) | 91,479 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2022-09-27 (+ 271 d) | 26.78M (+ 0B) | 12 (+ 0) | 74 (+ 0) | 91,479 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-12-30 (+ 115 d) | 26.78M (+ 0B) | 12 (+ 0) | 74 (+ 0) | 91,479 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-09-05 (+ 150 d) | 26.78M (+ 0B) | 12 (+ 0) | 74 (+ 0) | 91,479 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-04-08 (+ 68 d) | 26.78M (+ 0B) | 12 (+ 0) | 74 (+ 0) | 91,479 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-01-29 (+ 120 d) | 26.78M (+ 0B) | 12 (+ 0) | 74 (+ 0) | 91,479 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-10-01 (+ 38 d) | 26.78M (+ 0B) | 12 (+ 0) | 74 (+ 0) | 91,479 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-08-23 (+ 141 d) | 26.78M (+ 0B) | 12 (+ 0) | 74 (+ 0) | 91,479 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-04-04 (+ 196 d) | 26.78M (+ 0B) | 12 (+ 0) | 74 (+ 0) | 91,479 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-09-21 (+ 197 d) | 26.78M (+ 0B) | 12 (+ 0) | 74 (+ 0) | 91,479 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-03-07 (+ 43 d) | 26.78M (+ 0B) | 12 (+ 0) | 74 (+ 0) | 91,479 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-01-23 (+ 44 d) | 26.78M (+ 0B) | 12 (+ 0) | 74 (+ 0) | 91,479 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-12-09 (+ 29 d) | 26.78M (+ 0B) | 12 (+ 0) | 74 (+ 0) | 91,479 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-11-09 (+ 27 d) | 26.78M (+ 1.89M) | 12 (+ 0) | 74 (- 1) | 91,479 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-10-13 (+ 29 d) | 24.89M (+ 0B) | 12 (+ 0) | 75 (+ 0) | 91,479 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-09-13 (+ 34 d) | 24.89M (+ 0B) | 12 (+ 0) | 75 (+ 0) | 91,479 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-08-09 (+ 27 d) | 24.89M (+ 0B) | 12 (+ 0) | 75 (+ 0) | 91,479 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-07-12 (+ 31 d) | 24.89M (+ 0B) | 12 (+ 0) | 75 (+ 0) | 91,479 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-06-10 (+ 31 d) | 24.89M (+ 0B) | 12 (+ 0) | 75 (+ 0) | 91,479 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-05-10 (+ 28 d) | 24.89M (+ 0B) | 12 (+ 0) | 75 (+ 0) | 91,479 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-04-11 (+ 38 d) | 24.89M (+ 0B) | 12 (+ 0) | 75 (+ 0) | 91,479 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-03-03 | 24.89M | 12 | 75 | 91,479 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.