Name | n3_lyz_job1001.com |
---|---|
Data | 68.06M (+ 0B) |
Tables | 15 (+ 0) |
Columns | 83 (+ 0) |
Table Rows | 255,437 (+ 0) |
Media | 0B (+ 0B) |
Files | 0 (+ 0) |
Last Commit | 2023-06-19 18:12:05 (+ 169 d) |
该数据有来自中国1,134个地区5,182多家企业的22,545个综合招聘信息记录,这些招聘信息分别来自708个不同专业。每个招聘信息包含有岗位名称,内容描述,薪资,工作经验,文化程度,工作时间,雇员类型等重要信息。所有的工作信息记录共有9大主分类,分别是电力新能源,土木建筑,机电机械,石油化工,采矿冶炼,环保水务,IT互联网,建材家具和精选行业。该综合岗位信息招聘数据库整体共有15个表。
请注意:该数据库动态性较强,所以可以根据用户需求提供更新。
This is a comprehensive recruitment database of 22,545 jobs from 708 majors in 5,182 companies over 1,134 regions of China. Each job is comprised of job, description, salary, experience, education, time, employee type, etc. There are 9 primary categories (electric power, construction, mechanical & electrical machinery, chemical industry, mining & metallurgy, environment, internet, material, selected) for these jobs in this China recruitment data set.
The whole comprehensive jobs database has 15 tables.
Please NOTE: These data are more dynamic so it can be updated as your needs.
Tables | Rows | Columns | Non-empty |
---|---|---|---|
category_industry_1 | 9 | industry |
100%
|
category_industry_2 | 108 | industry |
100%
|
category_industry_1_id |
100%
|
||
category_industry_2_x_job | 26,193 | category_industry_2_id |
100%
|
job_id |
100%
|
||
company | 5,182 | company |
100%
|
description |
62.66%
|
||
industry |
60.98%
|
||
location |
64.57%
|
||
address |
62.66%
|
||
website |
30.1%
|
||
size |
55.38%
|
||
type |
58.26%
|
||
company_connection | 671 | contacter |
99.7%
|
company_id |
100%
|
||
telephone |
12.07%
|
||
fax |
9.39%
|
||
address |
89.72%
|
||
13.26%
|
|||
post_code |
77.65%
|
||
websit |
69.6%
|
||
job | 22,545 | job |
100%
|
description |
86.48%
|
||
salary_from |
50.38%
|
||
salary_to |
61%
|
||
salary_unit |
86.48%
|
||
salary_other |
86.48%
|
||
education |
86.48%
|
||
experience |
86.48%
|
||
time |
86.48%
|
||
quantity |
86.48%
|
||
employee_type |
86.48%
|
||
age |
86.48%
|
||
job_x_company | 22,545 | job_id |
100%
|
company_id |
100%
|
||
job_x_major | 18,807 | job_id |
100%
|
major_id |
100%
|
||
job_x_position | 30,303 | job_id |
100%
|
position_id |
100%
|
||
job_x_region | 19,498 | job_id |
100%
|
region_id |
100%
|
||
job_x_welfare | 106,186 | job_id |
100%
|
welfare_id |
100%
|
||
major | 708 | major |
100%
|
position | 1,214 | position |
100%
|
region | 1,134 | region |
99.91%
|
welfare | 334 | welfare |
100%
|
No media sets.
Time | Data | Tables | Columns | Rows | Media | Files |
---|---|---|---|---|---|---|
2023-06-19 (+ 169 d) | 68.06M (+ 0B) | 15 (+ 0) | 83 (+ 0) | 255,437 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2023-01-01 (+ 95 d) | 68.06M (+ 0B) | 15 (+ 0) | 83 (+ 0) | 255,437 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2022-09-27 (+ 271 d) | 68.06M (+ 0B) | 15 (+ 0) | 83 (+ 0) | 255,437 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-12-30 (+ 115 d) | 68.06M (+ 0B) | 15 (+ 0) | 83 (+ 0) | 255,437 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-09-05 (+ 150 d) | 68.06M (+ 0B) | 15 (+ 0) | 83 (+ 0) | 255,437 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-04-08 (+ 68 d) | 68.06M (+ 0B) | 15 (+ 0) | 83 (+ 0) | 255,437 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2021-01-29 (+ 120 d) | 68.06M (+ 0B) | 15 (+ 0) | 83 (+ 0) | 255,437 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-10-01 (+ 38 d) | 68.06M (+ 0B) | 15 (+ 0) | 83 (+ 0) | 255,437 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-08-23 (+ 141 d) | 68.06M (+ 0B) | 15 (+ 0) | 83 (+ 0) | 255,437 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2020-04-04 (+ 196 d) | 68.06M (+ 0B) | 15 (+ 0) | 83 (+ 0) | 255,437 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-09-21 (+ 197 d) | 68.06M (+ 0B) | 15 (+ 0) | 83 (+ 0) | 255,437 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-03-07 (+ 43 d) | 68.06M (+ 0B) | 15 (+ 0) | 83 (+ 0) | 255,437 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2019-01-23 (+ 44 d) | 68.06M (+ 0B) | 15 (+ 0) | 83 (+ 0) | 255,437 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-12-09 (+ 29 d) | 68.06M (+ 0B) | 15 (+ 0) | 83 (+ 0) | 255,437 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-11-09 (+ 27 d) | 68.06M (+ 31.45M) | 15 (+ 0) | 83 (+ 0) | 255,437 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-10-13 (+ 29 d) | 36.61M (+ 0B) | 15 (+ 0) | 83 (+ 0) | 255,437 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-09-13 (+ 34 d) | 36.61M (+ 0B) | 15 (+ 0) | 83 (+ 0) | 255,437 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-08-09 (+ 27 d) | 36.61M (+ 0B) | 15 (+ 0) | 83 (+ 0) | 255,437 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-07-12 (+ 31 d) | 36.61M (+ 0B) | 15 (+ 0) | 83 (+ 0) | 255,437 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-06-10 (+ 31 d) | 36.61M (+ 0B) | 15 (+ 0) | 83 (+ 0) | 255,437 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-05-10 (+ 28 d) | 36.61M (+ 0B) | 15 (+ 0) | 83 (+ 0) | 255,437 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-04-11 (+ 38 d) | 36.61M (+ 0B) | 15 (+ 0) | 83 (+ 0) | 255,437 (+ 0) | 0B (+ 0B) | 0 (+ 0) |
2018-03-03 | 36.61M | 15 | 83 | 255,437 | 0B | 0 |
Contact us for pricing to download the latest commit / release of this database.
In the same time, you can also access this data set via API.
Select a membership plan and sign up. Return to this page, click Online Query to access the API query maker. Create and open an API call to acquire the data.
The scanning and profiling of data size increments are done separately from those of the number of rows.
Subscribe to be notified of major data releases and updates.
STAY IN THE LOOP.